无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行

彭羽 陈嘉威 殷悦 曹永杰 廖莫愁 王丛笑 董晓丽 夏永姚

引用本文: 彭羽, 陈嘉威, 殷悦, 曹永杰, 廖莫愁, 王丛笑, 董晓丽, 夏永姚. 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行[J]. 物理化学学报, 2025, 41(8): 100087. doi: 10.1016/j.actphy.2025.100087 shu
Citation:  Yu Peng, Jiawei Chen, Yue Yin, Yongjie Cao, Mochou Liao, Congxiao Wang, Xiaoli Dong, Yongyao Xia. Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2[J]. Acta Physico-Chimica Sinica, 2025, 41(8): 100087. doi: 10.1016/j.actphy.2025.100087 shu

无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行

    通讯作者: 董晓丽, xldong@fudan.edu.cn; 夏永姚, yyxia@fudan.edu.cn
  • 基金项目:

    国家自然科学基金 21935003

摘要: 提升钴酸锂(LCO)正极的充电截止电压是提高锂离子电池(LIBs)能量密度的直接策略。然而,高电压下正极-电解质界面相(CEI)的不稳定性严重制约了高能量密度LIBs的发展。因此,本研究利用无碳酸乙烯酯(EC)的电解液设计,通过构建兼具化学稳定性与机械强度的氟/硼复合CEI以提升界面稳定性。采用碳酸丙烯酯(PC)及氟代碳酸乙烯酯(FEC)作为溶剂,增强电解液的抗氧化稳定性,促进CEI中氟化锂(LiF)组分的生成,提升其机械强度。同时,引入双草酸硼酸锂(LiBOB)添加剂,在CEI中形成含硼交联聚合物(LiBxOy)组分,以其柔性结构特征弥补LiF层的不足之处。最终,构建出具有富无机相(LiF和Li2C2O4)嵌入含硼类聚合物(LiBxOy)基体结构的刚柔并济CEI。这种CEI其兼具结构致密性、良好的机械稳定性与电化学稳定性等优点,有效抑制高电压下LCO的界面副反应及不可逆结构退化。实验结果表明,无EC的PC基电解液使LCO正极在4.6 V高截止电压下展现出优异的电化学性能,0.5C倍率循环200次后容量保持率达82%。此外,石墨||LCO全电池在4.5 V截止电压下表现出显著提升的循环稳定性,并实现−40 – 80 ℃宽温域范围内的稳定运行,验证了该优化电解液衍生的刚柔并济CEI的有效性。本研究突破传统EC基电解液设计范式,为开发高性能、宽温域及可持续PC基电解液提供了新思路。

English

    1. [1]

      M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561, https://doi.org/10.1002/adma.201800561. doi: 10.1002/adma.201800561

    2. [2]

      L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Chem. Soc. Rev. 47 (2018) 6505, https://doi.org/10.1039/C8CS00322J. doi: 10.1039/C8CS00322J

    3. [3]

      Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, B. Guo, Adv. Energy Mater. 11 (2021) 2000982, https://doi.org/10.1002/aenm.202000982. doi: 10.1002/aenm.202000982

    4. [4]

      C. Lin, J. Li, Z.-W. Yin, W. Huang, Q. Zhao, Q. Weng, Q. Liu, J. Sun, G. Chen, F. Pan, Adv. Mater. 36 (2024) 2307404, https://doi.org/10.1002/adma.202307404. doi: 10.1002/adma.202307404

    5. [5]

      B. Chu, Y.-J. Guo, J.-L. Shi, Y.-X. Yin, T. Huang, H. Su, A. Yu, Y.-G. Guo, Y.J. Li, Power Sources. 544 (2022) 231873, https://doi.org/10.1016/j.jpowsour.2022.231873. doi: 10.1016/j.jpowsour.2022.231873

    6. [6]

      Y. Kim, G.M. Veith, J. Nanda, R.R. Unocic, M. Chi, N.J. Dudney, Electrochim. Acta 56 (2011) 6573, https://doi.org/10.1016/j.electacta.2011.03.070. doi: 10.1016/j.electacta.2011.03.070

    7. [7]

      Z. Sun, J. Zhao, M. Zhu, J. Liu, Adv. Energy Mater. 14 (2024) 2303498, https://doi.org/10.1002/aenm.202303498. doi: 10.1002/aenm.202303498

    8. [8]

      Q. Wu, B. Zhang, Y. Lu, J. Energy Chem. 74 (2022) 283, https://doi.org/10.1016/j.jechem.2022.07.007. doi: 10.1016/j.jechem.2022.07.007

    9. [9]

      N. Qin, Q. Gan, Z. Zhuang, Y. Wang, Y. Li, Z. Li, I. Hussain, C. Zeng, G. Liu, Y. Bai, K. Zhang, Z. Lu, Adv. Energy Mater. 12 (2022) 2201549, https://doi.org/10.1002/aenm.202201549. doi: 10.1002/aenm.202201549

    10. [10]

      Z. Zhuang, J. Wang, K. Jia, G. Ji, J. Ma, Z. Han, Z. Piao, R. Gao, H. Ji, X. Zhong, G. Zhou, H.-M. Cheng, Adv. Mater. 35 (2023) 2212059, https://doi.org/10.1002/adma.202212059. doi: 10.1002/adma.202212059

    11. [11]

      Z. Liu, M. Han, S. Zhang, H. Li, X. Wu, Z. Fu, H. Zhang, G. Wang, Y. Zhang, Adv. Mater. 36 (2024) 2404188, https://doi.org/10.1002/adma.202404188. doi: 10.1002/adma.202404188

    12. [12]

      T. Fan, Y. Wang, V.K. Harika, A. Nimkar, K. Wang, X. Liu, M. Wang, L. Xu, Y. Elias, H. Sclar, M.S. Chae, Y. Min, Y. Lu, N. Shpigel, D. Aurbach, Adv. Sci. 9 (2022) 2202627, https://doi.org/10.1002/advs.202202627. doi: 10.1002/advs.202202627

    13. [13]

      T. Cheng, Z. Ma, R. Qian, Y. Wang, Q. Cheng, Y. Lyu, A. Nie, B. Guo, Adv. Funct. Mater. 8 (2021) 2001974, https://doi.org/10.1002/adfm.202001974. doi: 10.1002/adfm.202001974

    14. [14]

      X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, F. Ren, W. Zhang, J. Zheng, Y. Cheng, X. Wang, W. Yang, J. Zhu, S. Pan, M. Lin, L. Zeng, Z. Gong, J. Li, Y. Yang, Adv. Energy Mater. 12 (2022) 2200197, https://doi.org/10.1002/aenm.202200197. doi: 10.1002/aenm.202200197

    15. [15]

      C. Yang, X. Liao, X. Zhou, C. Sun, R. Qu, J. Han, Y. Zhao, L. Wang, Y. You, J. Lu, Adv. Mater. 35 (2023) 2210966, https://doi.org/10.1002/adma.202210966. doi: 10.1002/adma.202210966

    16. [16]

      Y. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen, J. Paulsen, S. Kumakura, M. Zhang, Y.S. Meng, Adv. Energy Mater. 12 (2022) 2103033, https://doi.org/10.1002/aenm.202103033. doi: 10.1002/aenm.202103033

    17. [17]

      M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li, T. Liu, C. Wang, Y.-S. Hu, H. Li, X. Huang, L. Chen, L. Suo, Nat. Commun. 14 (2023) 1082, https://doi.org/10.1038/s41467-023-36853-x. doi: 10.1038/s41467-023-36853-x

    18. [18]

      Y. Qin, K. Xu, Q. Wang, M. Ge, T. Cheng, M. Liu, H. Cheng, Y. Hu, C. Shen, D. Wang, Y. Liu, B. Guo, Nano Energy 96 (2022) 107082, https://doi.org/10.1016/j.nanoen.2022.107082. doi: 10.1016/j.nanoen.2022.107082

    19. [19]

      Q. Liu, W. Jiang, J. Xu, Y. Xu, Z. Yang, D.-J. Yoo, K.Z. Pupek, C. Wang, C. Liu, K. Xu, Z. Zhang, Nat. Commun. 14 (2023) 3678, https://doi.org/10.1038/s41467-023-38229-7. doi: 10.1038/s41467-023-38229-7

    20. [20]

      J. Liu, M. Wu, X. Li, D. Wu, H. Wang, J. Huang, J. Ma, Adv. Energy Mater. 13 (2023) 2300084, https://doi.org/10.1002/aenm.202300084. doi: 10.1002/aenm.202300084

    21. [21]

      B. Zhang, L. Wang, X. Wang, S. Zhou, A. Fu, Y. Yan, Q. Wang, Q. Xie, D. Peng, Y. Qiao, S.-G. Sun, Energy Storage Mater. 53 (2022) 492, https://doi.org/10.1016/j.ensm.2022.09.032. doi: 10.1016/j.ensm.2022.09.032

    22. [22]

      Z. Wu, G. Zeng, J. Yin, C.-L. Chiang, Q. Zhang, B. Zhang, J. Chen, Y. Yan, Y. Tang, H. Zhang, S. Zhou, Q. Wang, X. Kuai, Y.-G. Lin, L. Gu, Y. Qiao, S.-G. Sun, ACS Energy Lett. 8 (2023) 4806, https://doi.org/10.1021/acsenergylett.3c01954. doi: 10.1021/acsenergylett.3c01954

    23. [23]

      S. Kim, J.-A. Lee, D.G. Lee, J. Son, T.H. Bae, T.K. Lee, N.-S. Choi, ACS Energy Lett. 9 (2024) 262, https://doi.org/10.1021/acsenergylett.3c02534. doi: 10.1021/acsenergylett.3c02534

    24. [24]

      J. Xu, Nano-Micro Lett. 14 (2022) 166, https://doi.org/10.1007/s40820-022-00917-2. doi: 10.1007/s40820-022-00917-2

    25. [25]

      J.C. Hestenes, L.E. Marbella, ACS Energy Lett. 8 (2023) 4572, https://doi.org/10.1021/acsenergylett.3c01529. doi: 10.1021/acsenergylett.3c01529

    26. [26]

      Z. Sun, F. Li, J. Ding, Z. Lin, M. Xu, M. Zhu, J. Liu, ACS Energy Lett. 8 (2023) 2478, https://doi.org/10.1021/acsenergylett.3c00324. doi: 10.1021/acsenergylett.3c00324

    27. [27]

      Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 4 (2019) 269, https://doi.org/10.1038/s41560-019-0336-z. doi: 10.1038/s41560-019-0336-z

    28. [28]

      W. Li, A. Dolocan, J. Li, Q. Xie, A. Manthiram, Adv. Energy Mater. 9 (2019) 1901152, https://doi.org/10.1002/aenm.201901152. doi: 10.1002/aenm.201901152

    29. [29]

      R. Pan, Z. Cui, M. Yi, Q. Xie, A. Manthiram, Adv. Energy Mater. 12 (2022) 2103806, https://doi.org/10.1002/aenm.202103806. doi: 10.1002/aenm.202103806

    30. [30]

      M. Qin, M. Liu, Z. Zeng, Q. Wu, Y. Wu, H. Zhang, S. Lei, S. Cheng, J. Xie, Adv. Energy Mater. 12 (2022) 2201801, https://doi.org/10.1002/aenm.202201801. doi: 10.1002/aenm.202201801

    31. [31]

      X. Liu, X. Shen, H. Li, P. Li, L. Luo, H. Fan, X. Feng, W. Chen, X. Ai, H. Yang, Y. Cao, Adv. Energy Mater. 11 (2021) 2003905, https://doi.org/10.1002/aenm.202003905. doi: 10.1002/aenm.202003905

    32. [32]

      H. Liang, Z. Ma, Y. Wang, F. Zhao, Z. Cao, L. Cavallo, Q. Li, J. Ming, ACS Nano 17 (2023) 18062, https://doi.org/10.1021/acsnano.3c04790. doi: 10.1021/acsnano.3c04790

    33. [33]

      X. Fan, C. Wang, Chem. Soc. Rev. 50 (2021) 10486, https://doi.org/10.1039/D1CS00450F. doi: 10.1039/D1CS00450F

    34. [34]

      Z. Li, H. Rao, R. Atwi, B.M. Sivakumar, B. Gwalani, S. Gray, K.S. Han, T.A. Everett, T.A. Ajantiwalay, V. Murugesan, N.N. Rajput, V.G. Pol, Nat. Commun. 14 (2023) 868, https://doi.org/10.1038/s41467-023-36647-1. doi: 10.1038/s41467-023-36647-1

    35. [35]

      S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, Y. Lu, Angew. Chem. Int. Ed. 59 (2020) 14935, https://doi.org/10.1002/anie.202004853. doi: 10.1002/anie.202004853

    36. [36]

      D. Wu, C. Zhu, H. Wang, J. Huang, G. Jiang, Y. Yang, G. Yang, D. Tang, J. Ma, Angew. Chem. Int. Ed. 63 (2024) 202315608, https://doi.org/10.1002/anie.202315608. doi: 10.1002/anie.202315608

    37. [37]

      R. Wang, B. Weng, A. Mahadevegowda, I. Temprano, H. Wang, Z. He, C. Ducati, Y. Xiao, C.P. Grey, M.F.L. De Volder, Adv. Energy Mater. 14 (2024) 2401097, https://doi.org/10.1002/aenm.202401097. doi: 10.1002/aenm.202401097

    38. [38]

      W.M. Dose, W. Li, I. Temprano, C.A. O'Keefe, B.L. Mehdi, ACS Energy Lett. 10 (2022) 3524, https://doi.org/10.1021/acsenergylett.2c01722. doi: 10.1021/acsenergylett.2c01722

    39. [39]

      D. Wu, J. He, J. Liu, M. Wu, S. Qi, H. Wang, J. Huang, F. Li, D. Tang, J. Ma, Adv. Energy Mater. 12 (2022) 2200337, https://doi.org/10.1002/aenm.202200337. doi: 10.1002/aenm.202200337

    40. [40]

      J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin, C. Wang, Nature 614 (2023) 694, https://doi.org/10.1038/s41586-022-05627-8. doi: 10.1038/s41586-022-05627-8

    41. [41]

      P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, M. Li, T. Deng, L. Cao, S. Liu, X. He, Y. Xu, C. Wang, Angew. Chem. Int. Ed. 61 (2022) e202202731, https://doi.org/10.1002/anie.202202731. doi: 10.1002/anie.202202731

    42. [42]

      Q. Li, Y. Wang, X. Wang, X. Sun, J.-N. Zhang, X. Yu, H. Li, ACS Appl. Mater. Interfaces 12 (2020) 2319, https://doi.org/10.1021/acsami.9b16727. doi: 10.1021/acsami.9b16727

    43. [43]

      Y. Chen, Q. He, Y. Mo, W. Zhou, Y. Zhao, N. Piao, C. Liu, P. Xiao, H. Liu, B. Li, S. Chen, L. Wang, X. He, L. Xing, J. Liu, Adv. Energy Mater. 12 (2022) 2201631, https://doi.org/10.1002/aenm.202201631. doi: 10.1002/aenm.202201631

    44. [44]

      J. Lai, Y. Huang, X. Zeng, T. Zhou, Z. Peng, Z. Li, X. Zhang, K. Ding, C. Xu, Y. Ying, Y.-P. Cai, R. Shang, J. Zhao, Q. Zheng, ACS Energy Lett. 8 (2023) 2241, https://doi.org/10.1021/acsenergylett.3c00504. doi: 10.1021/acsenergylett.3c00504

    45. [45]

      M. Qin, Z. Zeng, Q. Wu, F. Ma, Q. Liu, S. Cheng, J. Xie, Adv. Funct. Mater. 34 (2024) 2406357, https://doi.org/10.1002/adfm.202406357. doi: 10.1002/adfm.202406357

    46. [46]

      Y. Wang, Z. Li, Y. Hou, Z. Hao, Q. Zhang, Y. Ni, Y. Lu, Z. Yan, K. Zhang, Q. Zhao, F. Li, J. Chen, Chem. Soc. Rev. 52 (2023) 2713, https://doi.org/10.1039/D2CS00873D. doi: 10.1039/D2CS00873D

    47. [47]

      D.Y. Wang, N.N. Sinha, J.C. Burns, R. Petibon, J.R. Dahn, J. Power Sources 270 (2014) 68, https://doi.org/10.1016/j.jpowsour.2014.07.053. doi: 10.1016/j.jpowsour.2014.07.053

    48. [48]

      K. Guo, C. Zhu, H. Wang, S. Qi, J. Huang, D. Wu, J. Ma, Adv. Energy Mater. 13 (2023) 2204272, https://doi.org/10.1002/aenm.202204272. doi: 10.1002/aenm.202204272

    49. [49]

      S. Kim, S.O. Park, M.-Y. Lee, J.-A. Lee, I. Kristanto, T.K. Lee, D. Hwang, J. Kim, T.- U. Wi, H.-W. Lee, S.K. Kwak, N.-S. Choi, Energy Storage Mater. 45 (2022) 1, https://doi.org/10.1016/j.ensm.2021.10.031. doi: 10.1016/j.ensm.2021.10.031

    50. [50]

      E.W.C. Spotte-Smith, T.B. Petrocelli, H.D. Patel, S.M. Blau, K.A. Persson, ACS Energy Lett. 8 (2023) 347, https://doi.org/10.1021/acsenergylett.2c02351. doi: 10.1021/acsenergylett.2c02351

    51. [51]

      Z. Piao, R. Gao, Y. Liu, G. Zhou, H.-M. Cheng, Adv. Mater. 35 (2023) 2206009, https://doi.org/10.1002/adma.202206009. doi: 10.1002/adma.202206009

    52. [52]

      S. Li, J. Li, P. Wang, H. Ding, J. Zhou, C. Li, X. Cui, Adv. Funct. Mater. 34 (2024) 2307180, https://doi.org/10.1002/adfm.202307180. doi: 10.1002/adfm.202307180

    53. [53]

      Y. Yang, H. Wang, C. Zhu, J. Ma, Angew. Chem. Int. Ed. 62 (2023) e202300057, https://doi.org/10.1002/anie.202300057. doi: 10.1002/anie.202300057

    54. [54]

      J. Zhang, P. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, B. Nan, X. Zhang, J. Xu, C. Wang, Adv. Mater. 34 (2022) 2108353, https://doi.org/10.1002/adma.202108353. doi: 10.1002/adma.202108353

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  37
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2025-08-15
  • 收稿日期:  2025-02-19
  • 接受日期:  2025-04-02
  • 修回日期:  2025-03-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章