Citation: Lewang Yuan,  Yaoyao Peng,  Zong-Jie Guan,  Yu Fang. 二维共价有机框架作为光催化剂在有机合成中的研究进展[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100086. doi: 10.1016/j.actphy.2025.100086 shu

二维共价有机框架作为光催化剂在有机合成中的研究进展

  • Received Date: 11 February 2025
    Revised Date: 18 March 2025
    Accepted Date: 28 March 2025

    Fund Project: This research was supported by National Natural Science Foundation of China (22371067).

  • 二维共价有机框架(2D COFs)具有拓扑可调性、大比表面积、易于功能化以及出色的稳定性等特性,这些特性使得它们在多相光催化领域中的应用日益广泛。本文首先概述了2D COFs的合成方法,包括溶剂热、离子热、机械化学、微波辅助、声化学和界面合成方法。它简要介绍了影响光催化性能的各种因素,包括结晶度和稳定性、能带结构、电荷转移能力、孔径和比表面积以及光源。随后,讨论转向总结和分析2D COFs作为光催化剂在有机小分子转化反应(如光催化氧化、还原和偶联反应)中的进展。最后,对2D COFs在光催化有机转化领域面临的机遇和挑战进行了总结和展望。
  • 加载中
    1. [1]

      A. Basak, S. Karak, R. Banerjee, J. Am. Chem. Soc. 145 (2023) 7592, https://doi.org/10.1021/jacs.3c00950.

    2. [2]

      A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez, J. Gascon, Chem. Rev. 120 (2020) 8468, https://doi.org/10.1021/acs.chemrev.9b00685.

    3. [3]

      I.P. Beletskaya, V.P. Ananikov, Chem. Rev. 111 (2011) 1596, https://doi.org/10.1021/cr100347k.

    4. [4]

      S. Bi, Z. Zhang, F. Meng, D. Wu, J.S. Chen, F. Zhang, Angew. Chem. Int. Ed. 61 (2021) e202111627, https://doi.org/10.1002/anie.202111627.

    5. [5]

      B.P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 135 (2013) 5328, https://doi.org/10.1021/ja4017842.

    6. [6]

      H.U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 345 (2003) 103, https://doi.org/10.1002/adsc.200390000.

    7. [7]

      M.J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 22 (2010) 2202, https://doi.org/10.1002/adma.200903436.

    8. [8]

      G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Chem. Rev. 121 (2021) 12278, https://doi.org/10.1021/acs.chemrev.1c00243.

    9. [9]

      Y. Cai, F.-X. Xiao, Acta Phys. -Chim. Sin. 40 (2024) 2306048, https://doi.org/10.3866/PKU.WHXB202306048.

    10. [10]

      N.L. Campbell, R. Clowes, L.K. Ritchie, A.I. Cooper, Chem. Mater. 21 (2009) 204, https://doi.org/10.1021/cm802981m.

    11. [11]

      Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029.

    12. [12]

      C. Chen, K.P. Nuckolls, S. Ding, W. Miao, D. Wong, M. Oh, R.L. Lee, S. He, C. Peng, D. Pei, et al., Nature 636 (2024) 342, https://doi.org/10.1038/s41586-024-08227-w.

    13. [13]

      H. Chen, D. Feng, F. Wei, F. Guo, A.K. Cheetham, Angew. Chem. Int. Ed. 63 (2024) e202415454, https://doi.org/10.1002/anie.202415454.

    14. [14]

      H. Chen, W. Liu, A. Laemont, C. Krishnaraj, X. Feng, F. Rohman, M. Meledina, Q. Zhang, R. Van Deun, K. Leus, et al., Angew. Chem. Int. Ed. 60 (2021) 10820, https://doi.org/10.1002/anie.202101036.

    15. [15]

      P. Chen, Y. Zhou, F. Dong, Acta Phys. -Chim. Sin. 37 (2020) 2010010, https://doi.org/10.3866/PKU.WHXB202010010.

    16. [16]

      T. Chen, Y. Pang, S.H. Ali, L. Chen, Y. Li, X. Yan, B. Wang, Mol. Catal. 558 (2024) 114045, https://doi.org/10.1016/j.mcat.2024.114045.

    17. [17]

      J. Cheng, S. Gao, B. Cheng, K. Yang, W. Wang, S. Cao, Acta Phys. -Chim. Sin. 40 (2024) 2406026, https://doi.org/10.3866/pku.Whxb202406026.

    18. [18]

      A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Science 310 (2005) 1166, https://doi.org/10.1126/science.1120411.

    19. [19]

      A. Corma, P. Serna, Science 313 (2006) 332, https://doi.org/10.1126/science.1128383.

    20. [20]

      X. Cui, S. Lei, A.C. Wang, L. Gao, Q. Zhang, Y. Yang, Z. Lin, Nano Energy 70 (2020) 104525, https://doi.org/10.1016/j.nanoen.2020.104525.

    21. [21]

      L. Dai, A. Dong, X. Meng, H. Liu, Y. Li, P. Li, B. Wang, Angew. Chem. Int. Ed. 62 (2023) e202300224, https://doi.org/10.1002/anie.202300224.

    22. [22]

      G. Das, F.A. Ibrahim, Z.A. Khalil, P. Bazin, F. Chandra, R.G. AbdulHalim, T. Prakasam, A.K. Das, S.K. Sharma, S. Varghese, et al., Small 20 (2024) 2311064, https://doi.org/10.1002/smll.202311064.

    23. [23]

      P. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A. Thomas, J. Am. Chem. Soc. 145 (2023) 2975, https://doi.org/10.1021/jacs.2c11454.

    24. [24]

      A. Dey, S. Chakraborty, A. Singh, F.A. Rahimi, S. Biswas, T. Mandal, T.K. Maji, Angew. Chem. Int. Ed. 63 (2024) e202403093, https://doi.org/10.1002/anie.202403093.

    25. [25]

      F. Dong, Acta Phys. -Chim. Sin. 37 (2021) 2101002, https://doi.org/10.3866/pku.Whxb202101002.

    26. [26]

      S. Enthaler, A. Company, Chem. Soc. Rev. 40 (2011) 4912, https://doi.org/10.1039/c1cs15085e.

    27. [27]

      Y. Fan, D.W. Kang, S. Labalme, W. Lin, J. Am. Chem. Soc. 145 (2023) 25074, https://doi.org/10.1021/jacs.3c09729.

    28. [28]

      Y. Fang, Y. Liu, H. Huang, J. Sun, J. Hong, F. Zhang, X. Wei, W. Gao, M. Shao, Y. Guo, et al., Nat. Commun. 15 (2024) 4856, https://doi.org/10.1038/s41467-024-49036-z.

    29. [29]

      X. Feng, L. Chen, Y. Dong, D. Jiang, Chem. Commun. 47 (2011) 1979, https://doi.org/10.1039/c0cc04386a.

    30. [30]

      C. Furlan, C. Mortarino, Renew. Sust. Energ. Rev. 81 (2018) 1879, https://doi.org/10.1016/j.rser.2017.05.284.

    31. [31]

      S.-X. Gan, C. Jia, Q.-Y. Qi, X. Zhao, Chem. Sci. 13 (2022) 1009, https://doi.org/10.1039/d1sc05504f.

    32. [32]

      Q. Gao, X. Li, G.-H. Ning, K. Leng, B. Tian, C. Liu, W. Tang, H.-S. Xu, K.P. Loh, Chem. Commun. 54 (2018) 2349, https://doi.org/10.1039/c7cc09866a.

    33. [33]

      Z.-Z. Gao, Z.-K. Wang, L. Wei, G. Yin, J. Tian, C.-Z. Liu, H. Wang, D.-W. Zhang, Y.-B. Zhang, X. Li, et al., ACS Appl. Mater. Inter. 12 (2019) 1404, https://doi.org/10.1021/acsami.9b19870.

    34. [34]

      K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 120 (2020) 8814, https://doi.org/10.1021/acs.chemrev.9b00550.

    35. [35]

      Q. Guan, G.-B. Wang, L.-L. Zhou, W.-Y. Li, Y.-B. Dong, Nanoscale Adv. 2 (2020) 3656, https://doi.org/10.1039/d0na00537a.

    36. [36]

      M. Guo, X. Guan, Q. Meng, M.L. Gao, Q. Li, H.L. Jiang, Angew. Chem. Int. Ed. 63 (2024) e202410097, https://doi.org/10.1002/anie.202410097.

    37. [37]

      A. Halder, M. Ghosh, A. Khayum M, S. Bera, M. Addicoat, H.S. Sasmal, S. Karak, S. Kurungot, R. Banerjee, J. Am. Chem. Soc. 140 (2018) 10941, https://doi.org/10.1021/jacs.8b06460.

    38. [38]

      E. Hamzehpoor, F. Effaty, T.H. Borchers, R.S. Stein, A. Wahrhaftig-Lewis, X. Ottenwaelder, T. Friščić, D.F. Perepichka, Angew. Chem. Int. Ed. 63 (2024) e202404539, https://doi.org/10.1002/anie.202404539.

    39. [39]

      A. Hayat, S. Raza, M.A. Amin, Z. Ajmal, M.M. Alghamdi, A.A. El-Zahhar, H. Ali, D. Ghernaout, Y. Al-Hadeethi, M. Sohail, et al., Mater. Sci. Eng. R Rep. 157 (2024) 100771, https://doi.org/10.1016/j.mser.2024.100771.

    40. [40]

      M.M. Heravi, V. Zadsirjan, P. Hajiabbasi, H. Hamidi, Monatsh. Chem. 150 (2019) 535, https://doi.org/10.1007/s00706-019-2364-6.

    41. [41]

      T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387, https://doi.org/10.1038/s41929-019-0242-6.

    42. [42]

      J. Hong, M. Liu, Y. Liu, S. Shang, X. Wang, C. Du, W. Gao, C. Hua, H. Xu, Z. You, et al., Angew. Chem. Int. Ed. 63 (2024) e202317876, https://doi.org/10.1002/anie.202317876.

    43. [43]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.

    44. [44]

      T. Huang, J. Kou, H. Yuan, H. Guo, K. Yuan, H. Li, F. Wang, Z. Dong, Adv. Funct. Mater. (2024) 2413943, https://doi.org/10.1002/adfm.202413943.

    45. [45]

      F. Hussin, H.O. Lintang, S.L. Lee, L. Yuliati, J. Photochem. Photobiol. A 340 (2017) 128, https://doi.org/10.1016/j.jphotochem.2017.03.016.

    46. [46]

      A. Jati, S. Dam, S. Kumar, K. Kumar, B. Maji, Chem. Sci. 14 (2023) 8624, https://doi.org/10.1039/d3sc02440g.

    47. [47]

      A. Jati, K. Dey, M. Nurhuda, M.A. Addicoat, R. Banerjee, B. Maji, J. Am. Chem. Soc. 144 (2022) 7822, https://doi.org/10.1021/jacs.2c01814.

    48. [48]

      A. Jiménez-Almarza, A. López-Magano, L. Marzo, S. Cabrera, R. Mas-Ballesté, J. Alemán, ChemCatChem 11 (2019) 4916, https://doi.org/10.1002/cctc.201901061.

    49. [49]

      C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51 (2012) 5062, https://doi.org/10.1002/anie.201107017.

    50. [50]

      L. Kong, X. Zhang, C. Wang, F. Wan, L. Li, Chin. J. Catal. 38 (2017) 2120, https://doi.org/10.1016/s1872-2067(17)62959-0.

    51. [51]

      C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C.V. Chandran, S. Borgmans, S.M.J. Rogge, K. Leus, et al., J. Am. Chem. Soc. 142 (2020) 20107, https://doi.org/10.1021/jacs.0c09684.

    52. [52]

      P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47 (2008) 3450, https://doi.org/10.1002/anie.200705710.

    53. [53]

      R. Kulkarni, Y. Noda, D. Kumar Barange, Y.S. Kochergin, P. Lyu, B. Balcarova, P. Nachtigall, M.J. Bojdys, Nat. Commun. 10 (2019) 3228, https://doi.org/10.1038/s41467-019-11264-z.

    54. [54]

      A. Laemont, G. Matthys, R. Lavendomme, P. Van Der Voort, Angew. Chem. Int. Ed. 63 (2024) e202412420, https://doi.org/10.1002/anie.202412420.

    55. [55]

      X. Lan, H. Li, Y. Liu, Y. Zhang, T. Zhang, Y. Chen, Angew. Chem. Int. Ed. 63 (2024) e202407092, https://doi.org/10.1002/anie.202407092.

    56. [56]

      N.S. Lewis, Science 315 (2007) 798, https://doi.org/10.1126/science.1137014.

    57. [57]

      S.V. Ley, A.W. Thomas, Angew. Chem. Int. Ed. 42 (2003) 5400, https://doi.org/10.1002/anie.200300594.

    58. [58]

      H. Li, Z. Zhou, T. Ma, K. Wang, H. Zhang, A.H. Alawadhi, O.M. Yaghi, J. Am. Chem. Soc. 146 (2024) 35486, https://doi.org/10.1021/jacs.4c14971.

    59. [59]

      J. Li, S.Y. Gao, J. Liu, S. Ye, Y. Feng, D.H. Si, R. Cao, Adv. Funct. Mater. 33 (2023) 2305735, https://doi.org/10.1002/adfm.202305735.

    60. [60]

      J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 49 (2020) 3565, https://doi.org/10.1039/d0cs00017e.

    61. [61]

      J. Li, Z. Zhang, J. Jia, X. Liu, Chem. Res. Chin. Univ. 38 (2022) 275, https://doi.org/10.1007/s40242-022-1434-1.

    62. [62]

      L. Li, Q. Shan, J. Zang, L. Yu, D.J. Young, Z.-G. Ren, H.-X. Li, Catal. Sci. Technol. 14 (2024) 7212, https://doi.org/10.1039/d4cy01083c.

    63. [63]

      Q. Li, Y. Ouyang, H. Li, L. Wang, J. Zeng, Angew. Chem. Int. Ed. 61 (2021) e202108069, https://doi.org/10.1002/anie.202108069.

    64. [64]

      S. Li, X. Chen, Y. Yuan, Acta Phys. -Chim. Sin. 39 (2023) 2303032, https://doi.org/10.3866/pku.Whxb202303032.

    65. [65]

      T. Li, P.L. Zhang, L.Z. Dong, Y.Q. Lan, Angew. Chem. Int. Ed. 63 (2024) e202318180, https://doi.org/10.1002/anie.202318180.

    66. [66]

      X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 119 (2019) 3962, https://doi.org/10.1021/acs.chemrev.8b00400.

    67. [67]

      Z. Li, Y. Zhi, P. Shao, H. Xia, G. Li, X. Feng, X. Chen, Z. Shi, X. Liu, Appl. Catal. B Environ. 245 (2019) 334, https://doi.org/10.1016/j.apcatb.2018.12.065.

    68. [68]

      C.Y. Lin, D. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 30 (2018) 1703646, https://doi.org/10.1002/adma.201703646.

    69. [69]

      Q. Lin, Y. Yusran, J. Xing, Y. Li, J. Zhang, T. Su, L. Yang, J. Suo, L. Zhang, Q. Li, et al., ACS Appl. Mater. Interfaces. 16 (2024) 5869, https://doi.org/10.1021/acsami.3c16724.

    70. [70]

      M. Liu, Q. Xu, G. Zeng, Angew. Chem. Int. Ed. 63 (2024) e202404886, https://doi.org/10.1002/anie.202404886.

    71. [71]

      S. Liu, J. Guo, Chem. Res. Chin. Univ. 38 (2022) 373, https://doi.org/10.1007/s40242-022-2007-z.

    72. [72]

      W. Liu, X. Li, C. Wang, H. Pan, W. Liu, K. Wang, Q. Zeng, R. Wang, J. Jiang, J. Am. Chem. Soc. 141 (2019) 17431, https://doi.org/10.1021/jacs.9b09502.

    73. [73]

      X. Liu, H. Qin, W. Fan, Sci. Bull. 61 (2016) 645, https://doi.org/10.1007/s11434-016-1053-7.

    74. [74]

      Y. Liu, S. Xing, J. Zhang, W. Liu, Y. Xu, Y. Zhang, K. Yang, L. Yang, K. Jiang, X. Shao, Org. Chem. Front. 9 (2022) 1375, https://doi.org/10.1039/d1qo01873f.

    75. [75]

      A. López-Magano, A. Jiménez-Almarza, J. Alemán, R. Mas-Ballesté, Catalysts 10 (2020) 720, https://doi.org/10.3390/catal10070720.

    76. [76]

      A. López-Magano, S. Daliran, A.R. Oveisi, R. Mas-Ballesté, A. Dhakshinamoorthy, J. Alemán, H. Garcia, R. Luque, Adv. Mater. 35 (2023) 2209475, https://doi.org/10.1002/adma.202209475.

    77. [77]

      J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017) 1601694, https://doi.org/10.1002/adma.201601694.

    78. [78]

      Z. Lu, H. Lv, Q. Liu, Z. Wang, Acta Phys. -Chim. Sin. 40 (2024) 2405005, https://doi.org/10.3866/pku.Whxb202405005.

    79. [79]

      . Ma, L. Qin, T. Zhou, J. Zhang, Energ. Environ. Sci. 17 (2024) 8992, https://doi.org/10.1039/d4ee03766a.

    80. [80]

      X. Ma, J. Kang, Y. Wu, C. Pang, S. Li, J. Li, Y. Xiong, J. Luo, M. Wang, Z. Xu, Trends Anal. Chem. 157 (2022) 116793, https://doi.org/10.1016/j.trac.2022.116793.

    81. [81]

      H. Mai, D. Chen, Y. Tachibana, H. Suzuki, R. Abe, R.A. Caruso, Chem. Soc. Rev. 50 (2021) 13692, https://doi.org/10.1039/d1cs00684c.

    82. [82]

      .J. Martin, G. Liu, S.J.A. Moniz, Y. Bi, A.M. Beale, J. Ye, J. Tang, Chem. Soc. Rev. 44 (2015) 7808, https://doi.org/10.1039/c5cs00380f.

    83. [83]

      L. Marzo, S.K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 57 (2018) 10034, https://doi.org/10.1002/anie.201709766.

    84. [84]

      J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 40 (2011) 102, https://doi.org/10.1039/b913880n.

    85. [85]

      K.-K. Niu, T.-X. Luan, J. Cui, H. Liu, L.-B. Xing, P.-Z. Li, ACS Catal. 14 (2024) 2631, https://doi.org/10.1021/acscatal.3c05454.

    86. [86]

      K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666, https://doi.org/10.1126/science.1102896.

    87. [87]

      . Pang, G. Liu, D. Huang, Y. Zhu, X. Zhao, W. Wang, Y. Xiang, Angew. Chem. Int. Ed. 62 (2023) e202313520, https://doi.org/10.1002/anie.202313520.

    88. [88]

      H. Park, H.-i. Kim, G.-h. Moon, W. Choi, Energ. Environ. Sci. 9 (2016) 411, https://doi.org/10.1039/c5ee02575c.

    89. [89]

      . Peng, L. Yuan, K.K. Liu, Z.J. Guan, S. Jin, Y. Fang, Angew. Chem. Int. Ed. 63 (2024) e202423055, https://doi.org/10.1002/anie.202423055.

    90. [90]

      S.P. Qi, R.T. Guo, Z.X. Bi, Z.R. Zhang, C.F. Li, W.G. Pan, Small 19 (2023) 2303632, https://doi.org/10.1002/smll.202303632.

    91. [91]

      Y. Qian, Y. Han, X. Zhang, G. Yang, G. Zhang, H.-L. Jiang, Nat. Commun. 14 (2023) 3083, https://doi.org/10.1038/s41467-023-38884-w.

    92. [92]

      Y. Qian, H.-L. Jiang, Acc. Chem. Res. 57 (2024) 1214, https://doi.org/10.1021/acs.accounts.4c00061.

    93. [93]

      J. Qin, Y. An, Y. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002.

    94. [94]

      L. Qin, C. Ma, J. Zhang, T. Zhou, Adv. Funct. Mater. 34 (2024) 2401562, https://doi.org/10.1002/adfm.202401562.

    95. [95]

      . Roy, B. Mishra, S. Maji, A. Sinha, S. Dutta, S. Mondal, A. Banerjee, P. Pachfule, D. Adhikari, Angew. Chem. Int. Ed. 63 (2024) e202410300, https://doi.org/10.1002/anie.202410300.

    96. [96]

      P. Ruiz-Castillo, S.L. Buchwald, Chem. Rev. 116 (2016) 12564, https://doi.org/10.1021/acs.chemrev.6b00512.

    97. [97]

      K. Seob Song, P.W. Fritz, D.F. Abbott, L. Nga Poon, C.M. Caridade, F. Gándara, V. Mougel, A. Coskun, Angew. Chem. Int. Ed. 62 (2023) e202309775, https://doi.org/10.1002/anie.202309775.

    98. [98]

      D. Shindell, C.J. Smith, Nature 573 (2019) 408, https://doi.org/10.1038/s41586-019-1554-z.

    99. [99]

      H. Song, X. Meng, Z.-j. Wang, H. Liu, J. Ye, Joule 3 (2019) 1606, https://doi.org/10.1016/j.joule.2019.06.023.

    100. [100]

      Y. Song, F. Xin, L. Zhang, Y. Wang, ChemCatChem 9 (2017) 4139, https://doi.org/10.1002/cctc.201700856.

    101. [101]

      L. Stegbauer, K. Schwinghammer, B.V. Lotsch, Chem. Sci. 5 (2014) 2789, https://doi.org/10.1039/c4sc00016a.

    102. [102]

      S. Suleman, Y. Zhang, Y. Qian, J. Zhang, Z. Lin, Ö. Metin, Z. Meng, H.L. Jiang, Angew. Chem. Int. Ed. 63 (2023) e202314988, https://doi.org/10.1002/anie.202314988.

    103. [103]

      C. Sun, L. Karuppasamy, L. Gurusamy, H.-J. Yang, C.-H. Liu, J. Dong, J.J. Wu, Sep. Purif. Technol. 271 (2021) 118873, https://doi.org/10.1016/j.seppur.2021.118873.

    104. [104]

      Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6 (2012) 511, https://doi.org/10.1038/nphoton.2012.175.

    105. [105]

      D. Tan, R. Zhuang, R. Chen, M. Ban, W. Feng, F. Xu, X. Chen, Q. Wang, Adv. Funct. Mater. 34 (2023) 2311655, https://doi.org/10.1002/adfm.202311655.

    106. [106]

      P.-J. Tian, X.-H. Han, Q.-Y. Qi, X. Zhao, Chem. Sci. 15 (2024) 9669, https://doi.org/10.1039/d4sc01780c.

    107. [107]

      C. Wang, J. Tang, Z. Chen, Y. Jin, J. Liu, H. Xu, H. Wang, X. He, Q. Zhang, Energy Storage Mater. 55 (2023) 498, https://doi.org/10.1016/j.ensm.2022.12.015.

    108. [108]

      G.-B. Wang, Y.-J. Wang, J.-L. Kan, K.-H. Xie, H.-P. Xu, F. Zhao, M.-C. Wang, Y. Geng, Y.-B. Dong, J. Am. Chem. Soc. 145 (2023) 4951, https://doi.org/10.1021/jacs.2c13541.

    109. [109]

      H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, et al., Chem. Soc. Rev. 49 (2020) 4135, https://doi.org/10.1039/d0cs00278j.

    110. [110]

      J.-C. Wang, T. Sun, J. Zhang, Z. Chen, J.-Q. Du, J.-L. Kan, Y.-B. Dong, Chem. Sci. 15 (2024) 18634, https://doi.org/10.1039/d4sc04358h.

    111. [111]

      M. Wang, G. Liang, M. Wang, M. Hu, L. Zhu, Z. Li, Z. Zhang, L. He, M. Du, Chem. Eng. J. 448 (2022) 137779, https://doi.org/10.1016/j.cej.2022.137779.

    112. [112]

      M. Wang, T. Zeng, Y. Yu, X. Wang, Y. Zhao, H. Xi, Y.-B. Zhang, J. Am. Chem. Soc. 146 (2023) 1035, https://doi.org/10.1021/jacs.3c11944.

    113. [113]

      Q. Wang, K. Domen, Chem. Rev. 120 (2019) 919, https://doi.org/10.1021/acs.chemrev.9b00201.

    114. [114]

      T. Wang, G.-X. Ren, Z. Shadike, J.-L. Yue, M.-H. Cao, J.-N. Zhang, M.-W. Chen, X.-Q. Yang, S.-M. Bak, P. Northrup, et al., Nat. Commun. 10 (2019) 4458, https://doi.org/10.1038/s41467-019-12310-6.

    115. [115]

      W. Wang, D. Huang, W. Zheng, X. Zhao, K. He, H. Pang, Y. Xiang, Chem. Mater. 35 (2023) 7154, https://doi.org/10.1021/acs.chemmater.3c01425.

    116. [116]

      W. Wang, M.O. Tadé, Z. Shao, Chem. Soc. Rev. 44 (2015) 5371, https://doi.org/10.1039/c5cs00113g.

    117. [117]

      X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. -Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005.

    118. [118]

      X. Wang, X. Han, J. Zhang, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 138 (2016) 12332, https://doi.org/10.1021/jacs.6b07714.

    119. [119]

      Y.A. Wang, Q. Wu, X. Wang, M. Jiang, R. Zhang, X.J. Chen, R.P. Liang, J.D. Qiu, Angew. Chem. Int. Ed. 63 (2024) e202413071, https://doi.org/10.1002/anie.202413071.

    120. [120]

      Z. Wang, J. Wang, J. Zhang, K. Dai, Acta Phys. -Chim. Sin. 39 (2022) 2209037, https://doi.org/10.3866/PKU.WHXB202209037.

    121. [121]

      P.-F. Wei, M.-Z. Qi, Z.-P. Wang, S.-Y. Ding, W. Yu, Q. Liu, L.-K. Wang, H.-Z. Wang, W.-K. An, W. Wang, J. Am. Chem. Soc. 140 (2018) 4623, https://doi.org/10.1021/jacs.8b00571.

    122. [122]

      D. Wu, S. Zhang, W.Y. Hernández, W. Baaziz, O. Ersen, M. Marinova, A.Y. Khodakov, V.V. Ordomsky, ACS Catal. 11 (2020) 19, https://doi.org/10.1021/acscatal.0c03955.

    123. [123]

      W. Xia, C. Ji, R. Wang, S. Qiu, Q. Fang, Acta Phys. -Chim. Sin. 39 (2023) 2212057, https://doi.org/10.3866/PKU.WHXB202212057.

    124. [124]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. -Chim. Sin. 40 (2024) 2407012, https://doi.org/10.3866/PKU.WHXB202407012.

    125. [125]

      L. Xiao, L. Qi, J. Sun, A. Husile, S. Zhang, Z. Wang, J. Guan, Nano Energy 120 (2024) 109155, https://doi.org/10.1016/j.nanoen.2023.109155.

    126. [126]

      F. Xie, C. Yuan, H. Tan, A.Z. Moshfegh, B. Zhu, J. Yu, Acta Phys. -Chim. Sin. 40 (2024) 2407013, https://doi.org/10.3866/PKU.WHXB202407013.

    127. [127]

      K. Xiong, K. Zhang, F. Zhang, B. Zeng, X. Lang, J. Colloid Interface Sci. 681 (2025) 250, https://doi.org/10.1016/j.jcis.2024.11.105.

    128. [128]

      Z. Xiong, B. Sun, H. Zou, R. Wang, Q. Fang, Z. Zhang, S. Qiu, J. Am. Chem. Soc. 144 (2022) 6583, https://doi.org/10.1021/jacs.2c02089.

    129. [129]

      F. Xue, J. Xiong, G. Mo, P. Peng, R. Chen, Z. Wang, Chin. J. Org. Chem. 33 (2013) 2291, https://doi.org/10.6023/cjoc201306023.

    130. [130]

      L. Yang, J. Yuan, G. Wang, Q. Cao, C. Zhang, M. Li, J. Shao, Y. Xu, H. Li, J. Lu, Adv. Funct. Mater. 33 (2023) 2300954, https://doi.org/10.1002/adfm.202300954.

    131. [131]

      Q. Yang, M. Luo, K. Liu, H. Cao, H. Yan, Appl. Catal. B Environ. 276 (2020) 119174, https://doi.org/10.1016/j.apcatb.2020.119174.

    132. [132]

      S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14614, https://doi.org/10.1021/jacs.8b09705.

    133. [133]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/PKU.WHXB202312014.

    134. [134]

      C.I. Yeo, Y.S. Tan, H.T.A. Awan, A. Hanan, W.P. Wong, R. Walvekar, B.H. Goh, M. Khalid, Coord. Chem. Rev. 521 (2024) 216167, https://doi.org/10.1016/j.ccr.2024.216167.

    135. [135]

      Z. Yong, T. Ma, Angew. Chem. Int. Ed. 62 (2023) e202308980, https://doi.org/10.1002/anie.202308980.

    136. [136]

      J.Y. Yue, J.X. Luo, Z.X. Pan, R.Z. Zhang, P. Yang, Q. Xu, B. Tang, Angew. Chem. Int. Ed. 63 (2024) e202405763, https://doi.org/10.1002/anie.202405763.

    137. [137]

      W. Zhang, P. Ai, L. Yuan, S. Peng, Y. Li, Fuel 369 (2024) 131785, https://doi.org/10.1016/j.fuel.2024.131785.

    138. [138]

      W. Zhang, X. Mei, L. Yuan, G. Wang, Y. Li, S. Peng, Appl. Surf. Sci. 593 (2022) 153459, https://doi.org/10.1016/j.apsusc.2022.153459.

    139. [139]

      Y. Zhang, P. Li, P. Cui, X. Hu, C. Shu, R. Sun, M. Peng, B. Tan, X. Wang, Angew. Chem. Int. Ed. 63 (2024) e202413131 https://doi.org/10.1002/anie.202413131.

    140. [140]

      W. Zhao, P. Yan, H. Yang, M. Bahri, A.M. James, H. Chen, L. Liu, B. Li, Z. Pang, R. Clowes, et al., Nat. Synth. 1 (2022) 87, https://doi.org/10.1038/s44160-021-00005-0.

    141. [141]

      Y. Zhao, X. Xu, K. Zhang, Z. Li, H. Wang, Y. Zhao, J. Qiu, J. Wang, ACS Catal. 14 (2024) 3556, https://doi.org/10.1021/acscatal.3c05648.

    142. [142]

      Y. Zhong, W. Dong, S. Ren, L. Li, Adv. Mater. 36 (2023) 2308251, https://doi.org/10.1002/adma.202308251.

    143. [143]

      Z. Zhou, T. Ma, H. Zhang, S. Chheda, H. Li, K. Wang, S. Ehrling, R. Giovine, C. Li, A.H. Alawadhi, et al., Nature 635 (2024) 96, https://doi.org/10.1038/s41586-024-08080-x.

    144. [144]

      Q. Zhu, Y.-L. Li, J. Yang, X.-M. Jia, Y.-H. Luo, D.-E. Zhang, Solid State Sci. 147 (2024) 107398, https://doi.org/10.1016/j.solidstatesciences.2023.107398.

    145. [145]

      Y.Q. Zou, J.R. Chen, X.P. Liu, L.Q. Lu, R.L. Davis, K.A. Jørgensen, W.J. Xiao, Angew. Chem. Int. Ed. 51 (2011) 784, https://doi.org/10.1002/anie.201107028.

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    8. [8]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    13. [13]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    19. [19]

      Meihong Luo Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055

    20. [20]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return