Citation:
Liangliang Song, Haoyan Liang, Shunqing Li, Bao Qiu, Zhaoping Liu. 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略[J]. Acta Physico-Chimica Sinica,
;2025, 41(8): 100085.
doi:
10.1016/j.actphy.2025.100085
-
得益于过渡金属和晶格氧共同参与氧化还原反应,富锂层状氧化物(LLOs)具有大于250 mAh·g-1的比容量,因而成为下一代商用锂离子电池的潜在候选正极材料。为进一步提高理论比容量并减少对环境和健康有害的钴、镍元素依赖,开发高锰富锂层状氧化物(HM-LLOs)成为一种可行的策略。通过引入更多的Li–O–Li构型,可以促进更多晶格氧参与氧化还原反应,从而提升理论比容量。然而,锰含量的增加也带来了如活化困难和不可逆氧释放等挑战,显著限制了HM-LLOs理论比容量的实际利用。基于此,本文首先探讨了HM-LLOs高理论比容量的来源,随后深入分析了高锰特性引发的结构变化及其对实际比容量利用的限制,最后系统总结了从合成到活性材料改性的多种优化策略,并展望了可能提升HM-LLOs实际比容量的未来方向。
-
-
-
[1]
J.M. Tarascon, M. Armand, Nature 414 (2001) 359, https://doi.org/10.1038/35104644.
-
[2]
Y.M. Chiang, Science 330 (2010) 1485, https://doi.org/10.1126/science.1198591.
-
[3]
S. Jiao, J. Wang, Y.-S. Hu, X. Yu, H. Li, ACS Energy Lett. 8 (2023) 3025, https://doi.org/10.1021/acsenergylett.3c00563.
-
[4]
Y. Zhang, X. Wen, Z. Shi, B. Qiu, G. Chen, Z. Liu, J. Energy Chem. 82 (2023) 259, https://doi.org/10.1016/j.jechem.2023.03.005.
-
[5]
C. Yin, L. Wan, B. Qiu, F. Wang, W. Jiang, H. Cui, J. Bai, S. Ehrlich, Z. Wei, Z. Liu, Energy Storage Mater. 35 (2021) 388, https://doi.org/10.1016/j.ensm.2020.11.034.
-
[6]
B. Qiu, M. Zhang, S.-Y. Lee, H. Liu, T.A. Wynn, L. Wu, Y. Zhu, W. Wen, C.M. Brown, D. Zhou, et al., Cell Rep. Phys. Sci. 1 (2020) 100028, https://doi.org/10.1016/j.xcrp.2020.100028.
-
[7]
J. Xu, S. Zhu, Z. Xu, H. Zhu, Comput. Mater. Sci. 229 (2023) 112426, https://doi.org/10.1016/j.commatsci.2023.112426.
-
[8]
J. Hwang, S. Myeong, W. Jin, H. Jang, G. Nam, M. Yoon, S.H. Kim, S.H. Joo, S.K. Kwak, M.G. Kim, et al., Adv. Mater. 32 (2020) 2001944, https://doi.org/10.1002/adma.202001944.
-
[9]
X. Wen, C. Yin, B. Qiu, L. Wan, Y. Zhou, Z. Wei, Z. Shi, X. Huang, Q. Gu, Z. Liu, J. Power Sources 523 (2022) 231022, https://doi.org/10.1016/j.jpowsour.2022.231022.
-
[10]
Y.T. Ma, P.F. Liu, Q.S. Xie, G.B. Zhang, H.F. Zheng, Y.X. Cai, Z. Li, L.S. Wang, Z.Z. Zhu, L.Q. Mai, et al., Nano Energy 59 (2019) 184, https://doi.org/10.1016/j.nanoen.2019.02.040.
-
[11]
X. Guo, J. Li, Y. Zhang, X. Zhang, J. Liu, W. Li, L. Lu, G. Jia, S. An, X. Qiu, Nano Energy 123 (2024) 109390, https://doi.org/10.1016/j.nanoen.2024.109390.
-
[12]
X. Li, Q. Gu, B. Qiu, C. Yin, Z. Wei, W. Wen, Y. Zhang, Y. Zhou, H. Gao, H. Liang, et al., Mater. Today 61 (2022) 91, https://doi.org/10.1016/j.mattod.2022.09.013.
-
[13]
H. Hafiz, K. Suzuki, B. Barbiellini, N. Tsuji, N. Yabuuchi, K. Yamamoto, Y. Orikasa, Y. Uchimoto, Y. Sakurai, H. Sakurai, et al., Nature 594 (2021) 213, https://doi.org/10.1038/s41586-021-03509-z.
-
[14]
B. Qiu, M. Zhang, Y. Xia, Z. Liu, Y.S. Meng, Chem. Mater. 29 (2017) 908, https://doi.org/10.1021/acs.chemmater.6b04815.
-
[15]
D.H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 8 (2016) 692, https://doi.org/10.1038/nchem.2524.
-
[16]
M. Okubo, A. Yamada, ACS Appl. Mater. Interfaces 9 (2017) 36463, https://doi.org/10.1021/acsami.7b09835.
-
[17]
L. Pauling, J. Am. Chem. Soc. 51 (1929) 1010, https://doi.org/10.1021/ja01379a006.
-
[18]
J. Rana, J.K. Papp, Z. Lebens-Higgins, M. Zuba, L.A. Kaufman, A. Goel, R. Schmuch, M. Winter, M.S. Whittingham, W. Yang, et al., ACS Energy Lett. 5 (2020) 634, https://doi.org/10.1021/acsenergylett.9b02799.
-
[19]
L. Chen, S. Chen, D.Z. Hu, Y.F. Su, W.K. Li, Z. Wang, L.Y. Bao, F. Wu, Acta Phys. Chim. Sin. 30 (2014) 467, https://doi.org/10.3866/PKU.WHXB201312252.
-
[20]
C. Yin, Z. Wei, M. Zhang, B. Qiu, Y. Zhou, Y. Xiao, D. Zhou, L. Yun, C. Li, Q. Gu, et al., Mater. Today 51 (2021) 15, https://doi.org/10.1016/j.mattod.2021.10.020.
-
[21]
B. Li, Z. Zhuo, L. Zhang, A. Iadecola, X. Gao, J. Guo, W. Yang, A.V. Morozov, A.M. Abakumov, J.-M. Tarascon, Nat. Mater. 22 (2023) 1370, https://doi.org/10.1038/s41563-023-01679-x.
-
[22]
X. Wu, Y. Jiang, X. Lou, Y. Liu, J. Li, J. Li, B. Hu, C. Li, ACS Nano 18 (2024) 20716, https://doi.org/10.1021/acsnano.4c06932.
-
[23]
B. Li, M.T. Sougrati, G. Rousse, A. Morozov, R. Dedryvère, A. Iadecola, A. Senyshyn, L.T. Zhang, A.M. Abakumov, M.L. Doublet, Nat. Chem. 13 (2021) 1070, https://doi.org/10.1038/s41557-021-00775-2.
-
[24]
B. Li, K. Kumar, I. Roy, A.V. Morozov, O.V. Emelyanova, L. Zhang, T. Koç, S. Belin, J. Cabana, R. Dedryvère, et al., Nat. Mater. 21 (2022) 1165, https://doi.org/10.1038/s41563-022-01278-2.
-
[25]
X. Wen, B. Qiu, H. Gao, X. Li, Z. Shi, Z. Liu, ACS Appl. Energy Mater. 5 (2022) 9079, https://doi.org/10.1021/acsaem.2c01556.
-
[26]
Devaraj, M. Gu, R. Colby, P. Yan, C.M. Wang, J.M. Zheng, J. Xiao, A. Genc, J.G. Zhang, I. Belharouak, et al., Nat. Commun. 6 (2015) 8014, https://doi.org/10.1038/ncomms9014.
-
[27]
J. Xiong, Z. Huang, S. Chen, S. Zhong, J. Electrochem. Soc. 171 (2024) 080522, https://doi.org/10.1149/1945-7111/ad6d99.
-
[28]
H. Peng, H. Zhuo, F. Xia, W. Zeng, C. Sun, J. Wu, Adv. Funct. Mater. 33 (2023) 2306804, https://doi.org/10.1002/adfm.202306804.
-
[29]
Y. Shin, H. Ding, K.A. Persson, Chem. Mater. 28 (2016) 2081, https://doi.org/10.1021/acs.chemmater.5b04862.
-
[30]
W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang, P. Xu, Y. Lu, W.-Z. Huang, J.- L. Li, J.-Q. Huang, et al., Chem. Soc. 146 (2024) 28190, https://doi.org/10.1021/jacs.4c08115.
-
[31]
X. Li, Y. Zhang, B. Qiu, G. Chen, Y. Zhou, Q. Gu, Z. Liu, Energy Environ. Mater. 7 (2024) e12722, https://doi.org/10.1002/eem2.12722.
-
[32]
H. Liu, Y. Chen, S. Hy, K. An, S. Venkatachalam, D. Qian, M. Zhang, Y.S. Meng, Adv. Energy Mater. 6 (2016) 1502143, https://doi.org/10.1002/aenm.201502143.
-
[33]
H. Liu, W. Hua, S. Kunz, M. Bianchini, H. Li, J. Peng, J. Lin, O. Dolotko, T. Bergfeldt, K. Wang, et al., Nat. Commun. 15 (2024) 9981, https://doi.org/10.1038/s41467-024-54312-z.
-
[34]
D. Ye, B. Wang, Y. Chen, G. Han, Z. Zhang, D. Hulicova-Jurcakova, J. Zou, L. Wang, J. Mater. Chem. A 2 (2014) 18767, https://doi.org/10.1039/c4ta03692a.
-
[35]
L. Zhang, D. Liu, J. Huang, J. Peng, H. Xie, B. Huang, Y. Li, Y. Sun, S. Xiao, R. Wang, J. Energy Storage 78 (2024) 110073, https://doi.org/10.1016/j.est.2023.110073.
-
[36]
Y. Zhou, H. Cui, B. Qiu, Y. Xia, C. Yin, L. Wan, Z. Shi, Z. Liu, ACS Mater. Lett. 3 (2021) 433, https://doi.org/10.1021/acsmaterialslett.1c00088.
-
[37]
W. Huang, C. Lin, M. Zhang, S. Li, Z. Chen, W. Zhao, C. Zhu, Q. Zhao, H. Chen, F. Pan, Adv. Energy Mater. 11 (2021) 2102646, https://doi.org/10.1002/aenm.202102646.
-
[38]
J. Hwang, S. Myeong, E. Lee, H. Jang, M. Yoon, H. Cha, J. Sung, M.G. Kim, D.H. Seo, J. Cho, Adv. Mater. 33 (2021) 2100352, https://doi.org/10.1002/adma.202100352.
-
[39]
Q. Chen, Y. Pei, H. Chen, Y. Song, L. Zhen, C.-Y. Xu, P. Xiao, G. Henkelman, Nat. Commun. 11 (2020) 3411, https://doi.org/10.1038/s41467-020-17126-3.
-
[40]
M. Saubanère, E. McCalla, J.-M. Tarascon, M.-L. Doublet, Energy Environ. Sci. 9 (2016) 984, https://doi.org/10.1039/c5ee03048j.
-
[41]
E. McCalla, A.M. Abakumov, M. Saubanère, D. Foix, E.J. Berg, G. Rousse, M.L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, Science 350 (2015) 1516, https://doi.org/10.1126/science.aac8260.
-
[42]
Grimaud, W. Hong, Y. Shao-Horn, J.M. Tarascon, Nat. Mater. 15 (2016) 121, https://doi.org/10.1038/nmat4551.
-
[43]
Y. Xie, M. Saubanère, M.L. Doublet, Energy Environ. Sci. 10 (2017) 266, https://doi.org/10.1039/c6ee02328b.
-
[44]
J.-J. Marie, R.A. House, G.J. Rees, A.W. Robertson, M. Jenkins, J. Chen, S. Agrestini, M. Garcia-Fernandez, K.-J. Zhou, P.G. Bruce, Nat. Mater. 23 (2024) 818, https://doi.org/10.1038/s41563-024-01833-z.
-
[45]
R.A. House, J.J. Marie, M.A. Perez-Osorio, G.J. Rees, E. Boivin, P.G. Bruce, Nat. Energy 6 (2021) 781, https://doi.org/10.1038/s41560-021-00780-2.
-
[46]
Z. Chen, W. Zhang, J. Liu, M. Zhang, S. Li, F. Pan, Adv. Mater. 36 (2024) 2403307, https://doi.org/10.1002/adma.202403307.
-
[47]
K. McColl, S.W. Coles, P. Zarabadi-Poor, B.J. Morgan, M.S. Islam, Nat. Mater. 23 (2024) 826, https://doi.org/10.1038/s41563-024-01873-5.
-
[48]
Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T.A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, et al., Nat. Energy 3 (2018) 641, https://doi.org/10.1038/s41560-018-0184-2.
-
[49]
W. Hua, S. Wang, M. Knapp, S.J. Leake, A. Senyshyn, C. Richter, M. Yavuz, J.R. Binder, C.P. Grey, H. Ehrenberg, et al., Nat. Commun. 10 (2019) 5365, https://doi.org/10.1038/s41467-019-13240-z.
-
[50]
Y. Shin, W.H. Kan, M. Aykol, J.K. Papp, B.D. McCloskey, G. Chen, K.A. Persson, Nat. Commun. 9 (2018) 4597, https://doi.org/10.1038/s41467-018-07080-6.
-
[51]
K. Ku, B. Kim, S.-K. Jung, Y. Gong, D. Eum, G. Yoon, K.-Y. Park, J. Hong, S.-P. Cho, D.-H. Kim, et al., Energy Environ. Sci. 13 (2020) 1269, https://doi.org/10.1039/c9ee04123k.
-
[52]
W. Liang, Y. Zhao, L. Shi, Z. Wang, S. Yuan, Angew. Chem. Int. Ed. 63 (2024) e12722, https://doi.org/10.1002/anie.202407477.
-
[53]
J.X. Zuo, K. Zhang, J. Wang, X.F. Li, Acta Phys. Chim. Sin. 41 (2025) 100009, https://doi.org/10.3866/PKU.WHXB202404042.
-
[54]
X.X. Shi, S.X. Liao, B. Yuan, Y.J. Zhong, B.H. Zhong, H. Liu, X.D. Guo, Acta Phys. Chim. Sin. 31 (2015) 1527, https://doi.org/10.3866/PKU.WHXB201506151.
-
[55]
P. Barai, Z. Feng, H. Kondo, V. Srinivasan, J. Phys. Chem. B 123 (2019) 3291, https://doi.org/10.1021/acs.jpcb.8b12004.
-
[56]
F. Cheng, Y. Xin, J. Chen, L. Lu, X. Zhang, H. Zhou, J. Mater. Chem. A 1 (2013) 5301, https://doi.org/10.1039/c3ta00153a.
-
[57]
P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu, Y. Liu, S.-J. Ahn, E. Kaeli, X. Xu, K.H. Stone, et al., Nat. Energy 6 (2021) 642, https://doi.org/10.1038/s41560-021-00832-7.
-
[58]
Y. Zhang, C. Yin, B. Qiu, G. Chen, Y. Shang, Z. Liu, Energy Storage Mater. 53 (2022) 763, https://doi.org/10.1016/j.ensm.2022.10.008.
-
[59]
L. Chen, Y. Su, S. Chen, N. Li, L. Bao, W. Li, Z. Wang, M. Wang, F. Wu, Adv. Mater. 26 (2014) 6756, https://doi.org/10.1002/adma.201402541.
-
[60]
D. Wang, Y. Wu, C. Wu, Z. Ye, L. Yang, Y. Li, R. Dong, Z. Wu, Y. Sun, Y. Song, et al., Interfaces 14 (2022) 2711, https://doi.org/10.1021/acsami.1c18651.
-
[61]
H. Choi, A.R. Schuer, H. Moon, M. Kuenzel, S. Passerini, Electrochim. Acta 430 (2022) 141047, https://doi.org/10.1016/j.electacta.2022.141047.
-
[62]
S. Xu, Z. Chen, W. Zhao, W. Ren, C. Hou, J. Liu, W. Wang, C. Yin, X. Tan, X. Lou, et al., Energy Environ. Sci. 17 (2024) 4327, https://doi.org/10.1039/d4ee90043j.
-
[63]
Gutierrez, J.T. Kirner, M.T. Saray, M. Avdeev, L.X. Geng, R.S. Yassar, W.Q. Lu, J. Croy, J. Electrochem. Soc. 169 (2022) 020574, https://doi.org/10.1149/1945-7111/ac5545.
-
[64]
N.H. Vu, P. Arunkumar, J.C. Im, D.T. Ngo, H.T.T. Le, C.-J. Park, W.B. Im, J. Mater. Chem. A 5 (2017) 15730, https://doi.org/10.1039/c7ta04002d.
-
[65]
J. Sun, X. Cao, W. Yang, E. Yoo, H. Zhou, J. Mater. Chem. A 11 (2023) 13956, https://doi.org/10.1039/d3ta01624b.
-
[66]
L. Nie, C. Liang, S. Chen, Y. He, W. Liu, H. Zhao, T. Gao, Z. Sun, Q. Hu, Y. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 13281, https://doi.org/10.1021/acsami.1c00723.
-
[67]
Z. Cai, S. Wang, H. Zhu, X. Tang, Y. Ma, D.Y.W. Yu, S. Zhang, G. Song, W. Yang, Y. Xu, et al., Colloid Interface Sci. 630 (2023) 281, https://doi.org/10.1016/j.jcis.2022.10.105.
-
[68]
K. Gu, Z. Shi, X. Li, B. Qiu, Z. Liu, J. Mater. Chem. A 12 (2024) 24727, https://doi.org/10.1039/d4ta03917c.
-
[69]
G. Choi, U. Chang, J. Lee, K. Park, H. Kwon, H. Lee, Y.-I. Kim, J.H. Seo, Y.-C. Park, I. Park, et al., Energy Environ. Sci. 17 (2024) 4634, https://doi.org/10.1039/d4ee00487f.
-
[70]
T. Li, Z. Shi, L. Li, Y. Zhang, Y. Li, J. Zhao, Q. Gu, W. Wen, B. Qiu, Z. Liu, Chem. Eng. J. 474 (2023) 145728, https://doi.org/10.1016/j.cej.2023.145728.
-
[71]
Z. Wei, Z. Shi, X. Wen, X. Li, B. Qiu, Q. Gu, J. Sun, Y. Han, H. Luo, H. Guo, et al., Mater. Today Energy 27 (2022) 101039, https://doi.org/10.1016/j.mtener.2022.101039.
-
[72]
L. Wang, S. Zhao, B. Wang, H. Yu, J. Energy Chem. 81 (2023) 110, https://doi.org/10.1016/j.jechem.2023.02.034.
-
[73]
M. Tabuchi, M. Kitta, K. Yazawa, K. Kubota, J. Electrochem. Soc. 168 (2021) 110525, https://doi.org/10.1149/1945-7111/ac3526.
-
[74]
J. Li, W. Li, C. Zhang, C. Han, X. Chen, H. Zhao, H. Xu, G. Jia, Z. Li, J. Li, et al., ACS Nano 17 (2023) 16827, https://doi.org/10.1021/acsnano.3c03666.
-
[75]
J. Meng, H. Xu, Q. Ma, Z. Li, L. Xu, Z. Chen, B. Cheng, S. Zhong, Electrochim. Acta 309 (2019) 326, https://doi.org/10.1016/j.electacta.2019.04.040.
-
[76]
L. Zeng, H. Liang, Y. Wang, X. Ying, B. Qiu, J. Pan, Y. Zhang, W. Wen, X. Wang, Q. Gu, et al., Energy Environ. Sci. 18 (2025) 284, https://doi.org/10.1039/d4ee02511c.
-
[77]
F. Wu, G.T. Kim, M. Kuenzel, H. Zhang, J. Asenbauer, D. Geiger, U. Kaiser, S. Passerini, Adv. Energy Mater. 9 (2019) 1902445, https://doi.org/10.1002/aenm.201902445.
-
[78]
X.Z. Ren, T. Liu, L.N. Sun, P.X. Zhang, Acta Phys. Chim. Sin. 30 (2014) 1641, https://doi.org/10.3866/PKU.WHXB201406172.
-
[79]
B. Zhang, Y. Zhang, X. Wang, H. Liu, Y. Yan, S. Zhou, Y. Tang, G. Zeng, X. Wu, H.- G. Liao, et al., J. Am. Chem. Soc. 145 (2023) 8700, https://doi.org/10.1021/jacs.3c01999.
-
[80]
C.-C. Wang, A. Manthiram, J. Mater. Chem. A 1 (2013) 10209, https://doi.org/10.1039/c3ta11703k.
-
[81]
T. Sudayama, K. Uehara, T. Mukai, D. Asakura, X.M. Shi, A. Tsuchimoto, B.M. de Boisse, T. Shimada, E. Watanabe, Y. Harada, et al., Energy Environ. Sci. 13 (2020) 1492, https://doi.org/10.1039/c9ee04197d.
-
[82]
X. Sun, C. Qin, B. Zhao, S. Jia, Z. Wang, T. Yang, X. Liu, L. Pan, L. Zheng, D. Luo, et al., Energy Storage Mater 70 (2024) 103559, https://doi.org/10.1016/j.ensm.2024.103559.
-
[83]
D. Liu, X. Fan, Z. Li, T. Liu, M. Sun, C. Qian, M. Ling, Y. Liu, C. Liang, Nano Energy 58 (2019) 786, https://doi.org/10.1016/j.nanoen.2019.01.080.
-
[84]
H. Liu, B. He, W. Xiang, Y.-C. Li, C. Bai, Y.-P. Liu, W. Zhou, X. Chen, Y. Liu, S. Gao, et al., Nanotechnology 31 (2020) 455704, https://doi.org/10.1088/1361-6528/ab9579.
-
[85]
U. Maitra, R.A. House, J.W. Somerville, N. Tapia-Ruiz, J.G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M.A. Perez-Osorio, et al., Nat. Chem. 10 (2018) 288, https://doi.org/10.1038/nchem.2923.
-
[86]
X. Bai, M. Sathiya, B. Mendoza-Sanchez, A. Iadecola, J. Vergnet, R. Dedryvère, M. Saubanèere, A.M. Abakumov, P. Rozier, J.M. Tarascon, Adv. Energy Mater. 8 (2018) 1802379, https://doi.org/10.1002/aenm.201802379.
-
[87]
Y. Liu, D. Liu, H.-H. Wu, X. Fan, A. Dou, Q. Zhang, M. Su, ACS Sustain. Chem. Eng. 6 (2018) 13045, https://doi.org/10.1021/acssuschemeng.8b02552.
-
[88]
Y. Cheng, Z. Wu, X. Dai, J. Hu, Z. Tai, J. Sun, Y. Liu, Q. Tan, Y. Liu, J. Colloid Interface Sci. 605 (2022) 718, https://doi.org/10.1016/j.jcis.2021.07.141.
-
[89]
Y. Liu, X. Fan, Z. Zhang, H.-H. Wu, D. Liu, A. Dou, M. Su, Q. Zhang, D. Chu, ACS Sustain. Chem. Eng. 7 (2018) 2225, https://doi.org/10.1021/acssuschemeng.8b04905.
-
[90]
G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, J. Electrochem. Soc. 159 (2012) A410, https://doi.org/10.1149/2.059204jes.
-
[91]
S.D. Zhang, Y. Liu, M.Y. Qi, A.M. Cao, Acta Phys. Chim. Sin. 37 (2021) 2011007, https://doi.org/10.3866/PKU.WHXB202011007.
-
[92]
M. Yang, B. Hu, F. Geng, C. Li, X. Lou, B. Hu, Electrochim. Acta 291 (2018) 278, https://doi.org/10.1016/j.electacta.2018.09.134.
-
[93]
Y.-S. Jiang, G. Sun, F.-D. Yu, L.-F. Que, L. Deng, X.-H. Meng, Z.-B. Wang, Ionics 26 (2019) 151, https://doi.org/10.1007/s11581-019-03202-2.
-
[94]
Z. Sun, L. Xu, C. Dong, H. Zhang, M. Zhang, Y. Ma, Y. Liu, Z. Li, Y. Zhou, Y. Han, et al., Nano Energy 63 (2019) 103887, https://doi.org/10.1016/j.nanoen.2019.103887.
-
[95]
R.A. House, J.-J. Marie, J. Park, G.J. Rees, S. Agrestini, A. Nag, M. GarciaFernandez, K.-J. Zhou, P.G. Bruce, Nat. Commun. 12 (2021) 2975, https://doi.org/10.1038/s41467-021-23154-4.
-
[96]
K.N. Zhao, X. Li, D. Su, Acta Phys. Chim. Sin. 37 (2021) 2009077, https://doi.org/10.3866/PKU.WHXB202009077.
-
[97]
S. Sun, C.Z. Zhao, H. Yuan, Z.H. Fu, X. Chen, Y. Lu, Y.F. Li, J.K. Hu, J.C. Dong, J.Q. Huang, et al., Sci. Adv. 8 (2022) eadd5189, https://doi.org/10.1126/sciadv.add5189.
-
[98]
Z. Zhu, R. Gao, I. Waluyo, Y. Dong, A. Hunt, J. Lee, J. Li, Adv. Energy Mater. 10 (2020) 2001120, https://doi.org/10.1002/aenm.202001120.
-
[99]
L. He, J.M. Xu, Y.J. Wang, C.J. Zhang, Acta Phys. Chim. Sin. 33 (2017) 1605, https://doi.org/10.3866/PKU.WHXB201704145.
-
[100]
S. Chong, Y. Chen, W. Yan, S. Guo, Q. Tan, Y. Wu, T. Jiang, Y. Liu, J. Power Sources 332 (2016) 230, https://doi.org/10.1016/j.jpowsour.2016.09.028.
-
[101]
H. Liu, D. Qian, M.G. Verde, M. Zhang, L. Baggetto, K. An, Y. Chen, K.J. Carroll, D. Lau, M. Chi, et al., ACS Appl. Mater. Interfaces 7 (2015) 19189, https://doi.org/10.1021/acsami.5b04932.
-
[102]
Q.R. Xue, J.L. Li, G.F. Xu, P.F. Hou, G. Yan, Y. Dai, X.D. Wang, F. Gao, Acta Phys. Chim. Sin. 30 (2014) 1667, https://doi.org/10.3866/PKU.WHXB201406251.
-
[103]
Y. Liu, X. Fan, X. Huang, D. Liu, A. Dou, M. Su, D. Chu, J. Power Sources 403 (2018) 27, https://doi.org/10.1016/j.jpowsour.2018.09.082.
-
[104]
Y. Liu, Q. Wang, X. Wang, T. Wang, Y. Gao, M. Su, A. Dou, Ionics 21 (2015) 2725, https://doi.org/10.1007/s11581-015-1484-1.
-
[105]
Y. Li, Z. Shi, B. Qiu, J. Zhao, X. Li, Y. Zhang, T. Li, Q. Gu, J. Gao, Z. Liu, Adv. Funct. Mater. 33 (2023) 2302236, https://doi.org/10.1002/adfm.202302236.
-
[106]
C.-C. Wang, J.-W. Lin, Y.-H. Yu, K.-H. Lai, K.-F. Chiu, C.-C. Kei, ACS Sustain. Chem. Eng. 6 (2018) 16941, https://doi.org/10.1021/acssuschemeng.8b04285.
-
[107]
K. Zhang, J. Qi, J. Song, Y. Zuo, Y. Yang, T. Yang, T. Chen, X. Liu, L. Chen, D. Xia, Adv. Mater. 34 (2022), https://doi.org/10.1002/adma.202109564.
-
[108]
Z. Xu, X. Guo, W. Song, J. Wang, T. Qin, Y. Yuan, J. Lu, Adv. Mater. 36 (2023) 2303612, https://doi.org/10.1002/adma.202303612.
-
[109]
L. Zeng, H. Liang, B. Qiu, Z. Shi, S. Cheng, K. Shi, Q. Liu, Z. Liu, Adv. Funct. Mater. 33 (2023) 2213260, https://doi.org/10.1002/adfm.202213260.
-
[110]
D. Mohanty, J. Li, D.P. Abraham, A. Huq, E.A. Payzant, D.L. Wood, C. Daniel, Chem. Mater. 26 (2014) 6272, https://doi.org/10.1021/cm5031415.
-
[111]
H. Dong, D. Jiang, S. Xing, L. Zhao, L. Hu, J. Mao, H. Zhang, Small 20 (2023) 2307156, https://doi.org/10.1002/smll.202307156.
-
[112]
Y. Zhang, X. Shi, S. Zheng, Y. Ouyang, M. Li, C. Meng, Y. Yu, Z.-S. Wu, Energy Environ. Sci. 16 (2023) 5043, https://doi.org/10.1039/d3ee01318a.
-
[113]
X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, J.N. Zhang, X.Q. Yu, Y.G. Guo, Adv. Mater. 30 (2018) 1801751, https://doi.org/10.1002/adma.201801751.
-
[114]
W. Guo, C. Zhang, Y. Zhang, L. Lin, W. He, Q. Xie, B. Sa, L. Wang, D.L. Peng, Adv. Mater. 33 (2021), https://doi.org/10.1002/adma.202103173.
-
[115]
Y. Ouyang, Y. Zhang, G. Wang, X. Wei, A. Zhang, J. Sun, S. Wei, L. Song, F. Dai, Z.S. Wu, Adv. Funct. Mater. 34 (2024) 2401249, https://doi.org/10.1002/adfm.202401249.
-
[116]
F. Klein, C. Pfeifer, J. Bansmann, Z. Jusys, R.J. Behm, M. Wohlfahrt-Mehrens, M. Linden, P. Axmann, J. Electrochem. Soc. 169 (2022) 120533, https://doi.org/10.1149/1945-7111/acaa5c.
-
[117]
H. Xie, L. Tan, Z. Yao, J. Cui, X. Ding, Z. Zhang, D. Luo, Z. Lin, ACS Appl. Mater. Interfaces 15 (2023) 2881, https://doi.org/10.1021/acsami.2c17534.
-
[118]
Z. Yang, H. Zhou, Z. Bao, J. Li, C. Yin, J. Mater. Sci. Mater. Electron. 30 (2019) 19493, https://doi.org/10.1007/s10854-019-02315-8.
-
[119]
B. Wu, X. Yang, X. Jiang, Y. Zhang, H. Shu, P. Gao, L. Liu, X. Wang, Adv. Funct. Mater. 28 (2018) 1803392, https://doi.org/10.1002/adfm.201803392.
-
[120]
Z. Zhu, D. Yu, Y. Yang, C. Su, Y. Huang, Y. Dong, I. Waluyo, B. Wang, A. Hunt, X. Yao, et al., Nat. Energy 4 (2019) 1049, https://doi.org/10.1038/s41560-019-0508-x.
-
[121]
Y. Pei, Q. Chen, M. Wang, B. Li, P. Wang, G. Henkelman, L. Zhen, G. Cao, C.-Y. Xu, Nano Energy 71 (2020) 104644, https://doi.org/10.1016/j.nanoen.2020.104644.
-
[122]
B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, et al., Nat. Commun. 7 (2016) 12108, https://doi.org/10.1038/ncomms12108.
-
[123]
K. Wang, J. Qiu, F. Hou, M. Yang, K. Nie, J. Wang, Y. Hou, W. Huang, W. Zhao, P. Zhang, et al., Adv. Energy Mater. 13 (2023) 2301216, https://doi.org/10.1002/aenm.202301216.
-
[124]
L. Bao, L. Wei, N. Fu, J. Dong, L. Chen, Y. Su, N. Li, Y. Lu, Y. Li, S. Chen, et al., Energy Chem. 66 (2022) 123, https://doi.org/10.1016/j.jechem.2021.07.023.
-
[125]
Y. Fang, Y. Su, J. Dong, J. Zhao, H. Wang, Y. Lu, B. Zhang, H. Yan, F. Wu, L. Chen, J. Energy Chem. 92 (2024) 250, https://doi.org/10.1016/j.jechem.2023.12.050.
-
[126]
X. Tan, R. Liu, C.X. Xie, Q. Shen, J. Power Sources 374 (2018) 134, https://doi.org/10.1016/j.jpowsour.2017.11.004.
-
[127]
T. Nakamura, K. Ohta, Y. Kimura, K. Tsuruta, Y. Tamenori, R. Aso, H. Yoshida, K. Amezawa, ACS Appl. Energy Mater. 3 (2020) 9703, https://doi.org/10.1021/acsaem.0c01303.
-
[128]
Zhu, J. Wu, B. Wang, J. Zhou, Y. Zhang, Y. Guo, K. Wu, H. Wu, Q. Wang, Y. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 61248, https://doi.org/10.1021/acsami.1c19399.
-
[129]
S. Kim, W. Cho, X. Zhang, Y. Oshima, J.W. Choi, Nat. Commun. 7 (2016) 13598, https://doi.org/10.1038/ncomms13598.
-
[130]
Z.K. Hao, H.X. Sun, Y.X. Ni, G.J. Yang, Z. Yang, Z.M. Hao, R.H. Wang, P.K. Yang, Y. Lu, Q. Zhao, et al., Adv. Mater. 36 (2023) 2307617, https://doi.org/10.1002/adma.202307617.
-
[131]
Y. Li, C. Wu, Y. Bai, L. Liu, H. Wang, F. Wu, N. Zhang, Y. Zou, ACS Appl. Mater. Interfaces 8 (2016) 18832, https://doi.org/10.1021/acsami.6b04687.
-
[132]
L. Wang, Y. Chen, X. Wen, J. Li, P. Meng, S. Tao, Sustain. Energy Technol. Assessments 52 (2022) 102006, https://doi.org/10.1016/j.seta.2022.102006.
-
[133]
L. Li, L. Wang, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, ACS Appl. Mater. Interfaces 9 (2017) 1516, https://doi.org/10.1021/acsami.6b13229.
-
[134]
C. Huang, Z.-Q. Fang, Z.-J. Wang, J.-W. Zhao, S.-X. Zhao, L.-J. Ci, Nanoscale 13 (2021) 4921, https://doi.org/10.1039/d0nr08980j.
-
[135]
Y. Liu, J. Lv, S. Liu, L. Chen, X. Chen, Powder Technol. 239 (2013) 461, https://doi.org/10.1016/j.powtec.2013.02.039.
-
[136]
J. Xu, L. Kaufman, F.C. Robles Hernandez, A. Pramanik, G. Babu, J. Nanda, B.D. McCloskey, P.M. Ajayan, ACS Appl. Energy Mater. 6 (2023) 5026, https://doi.org/10.1021/acsaem.3c00630.
-
[137]
Z. Qi, J. Tang, J. Huang, D. Zemlyanov, V.G. Pol, H. Wang, ACS Appl. Energy Mater. 2 (2019) 3461, https://doi.org/10.1021/acsaem.9b00259.
-
[138]
X. Ju, H. Huang, W. He, H. Zheng, P. Deng, S. Li, B. Qu, T. Wang, ACS Sustain. Chem. Eng. 6 (2018) 6312, https://doi.org/10.1021/acssuschemeng.8b00126.
-
[139]
Y. Sun, H. Cong, L. Zan, Y. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 38545, https://doi.org/10.1021/acsami.7b12080.
-
[140]
F. Wang, S. Xiao, M. Li, X. Wang, Y. Zhu, Y. Wu, A. Shirakawa, J.J. Peng, Power Sources 287 (2015) 416, https://doi.org/10.1016/j.jpowsour.2015.04.034.
-
[141]
M. Abe, F. Matsumoto, M. Saito, H. Yamamura, G. Kobayashi, A. Ito, T. Sanada, M. Hatano, Y. Ohsawa, Y. Sato, Chem. Lett. 41 (2012) 418, https://doi.org/10.1246/cl.2012.418.
-
[142]
M. Wang, C. Ke, H. Zhang, C. Hou, J. Chen, S. Liu, J. Wang, Nano Lett. 24 (2024) 12343, https://doi.org/10.1021/acs.nanolett.4c01532.
-
[143]
E. Yin, A. Grimaud, G. Rousse, A. Abakumov, A. Senyshyn, L. Zhang, S. Trabesinger, A. Iadecola, D. Foix, D. Giaume, et al., Nat. Commun. 11 (2020) 1252, https://doi.org/10.1038/s41467-020-14927-4.
-
[144]
J.-C. Li, J. Tang, J. Tian, C. Cheng, Y. Liao, B. Hu, T. Yu, H. Li, Z. Liu, Y. Rao, et al., J. Am. Chem. Soc. 146 (2024) 7274, https://doi.org/10.1021/jacs.3c11569.
-
[145]
S. Myeong, W. Cho, W. Jin, J. Hwang, M. Yoon, Y. Yoo, G. Nam, H. Jang, J.- G. Han, N.-S. Choi, et al., Nat. Commun. 9 (2018) 3285, https://doi.org/10.1038/s41467-018-05802-4.
-
[146]
J. Zhang, F. Cheng, S. Chou, J. Wang, L. Gu, H. Wang, H. Yoshikawa, Y. Lu, J. Chen, Adv. Mater. 31 (2019) 1901808, https://doi.org/10.1002/adma.201901808.
-
[147]
J. Song, B. Li, Y. Chen, Y. Zuo, F. Ning, H. Shang, G. Feng, N. Liu, C. Shen, X. Ai, et al., Adv. Mater. 32 (2020) 2000190, https://doi.org/10.1002/adma.202000190.
-
[148]
Q. Li, D. Ning, D. Wong, K. An, Y. Tang, D. Zhou, G. Schuck, Z. Chen, N. Zhang, X. Liu, Nat. Commun. 13 (2022) 1123, https://doi.org/10.1038/s41467-022-8793-9.
-
[149]
T. Cui, J. Xu, X. Wang, L. Liu, Y. Xiang, H. Zhu, X. Li, Y. Fu, Nat. Commun. 15 (2024) 4742, https://doi.org/10.1038/s41467-024-48890-1.
-
[150]
C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang, L. Ma, C. Yang, E. Hu, X.-Q. Yang, C. Wang, J. Am. Chem. Soc. 142 (2020) 8918, https://doi.org/10.1021/jacs.0c02302.
-
[151]
X. Zhong, M. Oubla, X. Wang, Y. Huang, H. Zeng, S. Wang, K. Liu, J. Zhou, L. He, H. Zhong, et al., Nat. Commun. 12 (2021) 3136, https://doi.org/10.1038/s41467-021-23430-3.
-
[152]
W. Huang, C. Lin, J. Qiu, S. Li, Z. Chen, H. Chen, W. Zhao, G. Ren, X. Li, M. Zhang, et al., Chem 8 (2022) 2163, https://doi.org/10.1016/j.chempr.2022.04.012.
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[3]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[4]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[5]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[6]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[7]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[8]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[9]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[10]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[11]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[12]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[13]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[14]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[15]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[16]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[17]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[18]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[19]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[20]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(11)
- HTML views(0)