超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略

宋亮亮 梁颢严 李顺清 邱报 刘兆平

引用本文: 宋亮亮, 梁颢严, 李顺清, 邱报, 刘兆平. 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略[J]. 物理化学学报, 2025, 41(8): 100085. doi: 10.1016/j.actphy.2025.100085 shu
Citation:  Liangliang Song, Haoyan Liang, Shunqing Li, Bao Qiu, Zhaoping Liu. Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries[J]. Acta Physico-Chimica Sinica, 2025, 41(8): 100085. doi: 10.1016/j.actphy.2025.100085 shu

超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略

    通讯作者: 邱报, qiubao@nimte.ac.cn; 刘兆平, liuzp@nimte.ac.cn
  • 基金项目:

    中国科学院对外合作计划 181GJHZ2024126MI

    低成本正极材料 TC220H06P

    中科杭州湾研究所(宁波)新材料有限公司 NIMTE-61-2024-2

    宁波市自然科学基金 2024QL041

    中国科学院青年创新促进会 2022299

摘要: 得益于过渡金属和晶格氧共同参与氧化还原反应,富锂层状氧化物(LLOs)具有大于250 mAh·g−1的比容量,因而成为下一代商用锂离子电池的潜在候选正极材料。为进一步提高理论比容量并减少对环境和健康有害的钴、镍元素依赖,开发高锰富锂层状氧化物(HM-LLOs)成为一种可行的策略。通过引入更多的Li–O–Li构型,可以促进更多晶格氧参与氧化还原反应,从而提升理论比容量。然而,锰含量的增加也带来了如活化困难和不可逆氧释放等挑战,显著限制了HM-LLOs理论比容量的实际利用。基于此,本文首先探讨了HM-LLOs高理论比容量的来源,随后深入分析了高锰特性引发的结构变化及其对实际比容量利用的限制,最后系统总结了从合成到活性材料改性的多种优化策略,并展望了可能提升HM-LLOs实际比容量的未来方向。

English

    1. [1]

      J.M. Tarascon, M. Armand, Nature 414 (2001) 359, https://doi.org/10.1038/35104644. doi: 10.1038/35104644

    2. [2]

      Y.M. Chiang, Science 330 (2010) 1485, https://doi.org/10.1126/science.1198591. doi: 10.1126/science.1198591

    3. [3]

      S. Jiao, J. Wang, Y.-S. Hu, X. Yu, H. Li, ACS Energy Lett. 8 (2023) 3025, https://doi.org/10.1021/acsenergylett.3c00563. doi: 10.1021/acsenergylett.3c00563

    4. [4]

      Y. Zhang, X. Wen, Z. Shi, B. Qiu, G. Chen, Z. Liu, J. Energy Chem. 82 (2023) 259, https://doi.org/10.1016/j.jechem.2023.03.005. doi: 10.1016/j.jechem.2023.03.005

    5. [5]

      C. Yin, L. Wan, B. Qiu, F. Wang, W. Jiang, H. Cui, J. Bai, S. Ehrlich, Z. Wei, Z. Liu, Energy Storage Mater. 35 (2021) 388, https://doi.org/10.1016/j.ensm.2020.11.034. doi: 10.1016/j.ensm.2020.11.034

    6. [6]

      B. Qiu, M. Zhang, S.-Y. Lee, H. Liu, T.A. Wynn, L. Wu, Y. Zhu, W. Wen, C.M. Brown, D. Zhou, et al., Cell Rep. Phys. Sci. 1 (2020) 100028, https://doi.org/10.1016/j.xcrp.2020.100028. doi: 10.1016/j.xcrp.2020.100028

    7. [7]

      J. Xu, S. Zhu, Z. Xu, H. Zhu, Comput. Mater. Sci. 229 (2023) 112426, https://doi.org/10.1016/j.commatsci.2023.112426. doi: 10.1016/j.commatsci.2023.112426

    8. [8]

      J. Hwang, S. Myeong, W. Jin, H. Jang, G. Nam, M. Yoon, S.H. Kim, S.H. Joo, S.K. Kwak, M.G. Kim, et al., Adv. Mater. 32 (2020) 2001944, https://doi.org/10.1002/adma.202001944. doi: 10.1002/adma.202001944

    9. [9]

      X. Wen, C. Yin, B. Qiu, L. Wan, Y. Zhou, Z. Wei, Z. Shi, X. Huang, Q. Gu, Z. Liu, J. Power Sources 523 (2022) 231022, https://doi.org/10.1016/j.jpowsour.2022.231022. doi: 10.1016/j.jpowsour.2022.231022

    10. [10]

      Y.T. Ma, P.F. Liu, Q.S. Xie, G.B. Zhang, H.F. Zheng, Y.X. Cai, Z. Li, L.S. Wang, Z.Z. Zhu, L.Q. Mai, et al., Nano Energy 59 (2019) 184, https://doi.org/10.1016/j.nanoen.2019.02.040. doi: 10.1016/j.nanoen.2019.02.040

    11. [11]

      X. Guo, J. Li, Y. Zhang, X. Zhang, J. Liu, W. Li, L. Lu, G. Jia, S. An, X. Qiu, Nano Energy 123 (2024) 109390, https://doi.org/10.1016/j.nanoen.2024.109390. doi: 10.1016/j.nanoen.2024.109390

    12. [12]

      X. Li, Q. Gu, B. Qiu, C. Yin, Z. Wei, W. Wen, Y. Zhang, Y. Zhou, H. Gao, H. Liang, et al., Mater. Today 61 (2022) 91, https://doi.org/10.1016/j.mattod.2022.09.013. doi: 10.1016/j.mattod.2022.09.013

    13. [13]

      H. Hafiz, K. Suzuki, B. Barbiellini, N. Tsuji, N. Yabuuchi, K. Yamamoto, Y. Orikasa, Y. Uchimoto, Y. Sakurai, H. Sakurai, et al., Nature 594 (2021) 213, https://doi.org/10.1038/s41586-021-03509-z. doi: 10.1038/s41586-021-03509-z

    14. [14]

      B. Qiu, M. Zhang, Y. Xia, Z. Liu, Y.S. Meng, Chem. Mater. 29 (2017) 908, https://doi.org/10.1021/acs.chemmater.6b04815. doi: 10.1021/acs.chemmater.6b04815

    15. [15]

      D.H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 8 (2016) 692, https://doi.org/10.1038/nchem.2524. doi: 10.1038/nchem.2524

    16. [16]

      M. Okubo, A. Yamada, ACS Appl. Mater. Interfaces 9 (2017) 36463, https://doi.org/10.1021/acsami.7b09835. doi: 10.1021/acsami.7b09835

    17. [17]

      L. Pauling, J. Am. Chem. Soc. 51 (1929) 1010, https://doi.org/10.1021/ja01379a006. doi: 10.1021/ja01379a006

    18. [18]

      J. Rana, J.K. Papp, Z. Lebens-Higgins, M. Zuba, L.A. Kaufman, A. Goel, R. Schmuch, M. Winter, M.S. Whittingham, W. Yang, et al., ACS Energy Lett. 5 (2020) 634, https://doi.org/10.1021/acsenergylett.9b02799. doi: 10.1021/acsenergylett.9b02799

    19. [19]

      L. Chen, S. Chen, D.Z. Hu, Y.F. Su, W.K. Li, Z. Wang, L.Y. Bao, F. Wu, Acta Phys. Chim. Sin. 30 (2014) 467, https://doi.org/10.3866/PKU.WHXB201312252. doi: 10.3866/PKU.WHXB201312252

    20. [20]

      C. Yin, Z. Wei, M. Zhang, B. Qiu, Y. Zhou, Y. Xiao, D. Zhou, L. Yun, C. Li, Q. Gu, et al., Mater. Today 51 (2021) 15, https://doi.org/10.1016/j.mattod.2021.10.020. doi: 10.1016/j.mattod.2021.10.020

    21. [21]

      B. Li, Z. Zhuo, L. Zhang, A. Iadecola, X. Gao, J. Guo, W. Yang, A.V. Morozov, A.M. Abakumov, J.-M. Tarascon, Nat. Mater. 22 (2023) 1370, https://doi.org/10.1038/s41563-023-01679-x. doi: 10.1038/s41563-023-01679-x

    22. [22]

      X. Wu, Y. Jiang, X. Lou, Y. Liu, J. Li, J. Li, B. Hu, C. Li, ACS Nano 18 (2024) 20716, https://doi.org/10.1021/acsnano.4c06932. doi: 10.1021/acsnano.4c06932

    23. [23]

      B. Li, M.T. Sougrati, G. Rousse, A. Morozov, R. Dedryvère, A. Iadecola, A. Senyshyn, L.T. Zhang, A.M. Abakumov, M.L. Doublet, Nat. Chem. 13 (2021) 1070, https://doi.org/10.1038/s41557-021-00775-2. doi: 10.1038/s41557-021-00775-2

    24. [24]

      B. Li, K. Kumar, I. Roy, A.V. Morozov, O.V. Emelyanova, L. Zhang, T. Koç, S. Belin, J. Cabana, R. Dedryvère, et al., Nat. Mater. 21 (2022) 1165, https://doi.org/10.1038/s41563-022-01278-2. doi: 10.1038/s41563-022-01278-2

    25. [25]

      X. Wen, B. Qiu, H. Gao, X. Li, Z. Shi, Z. Liu, ACS Appl. Energy Mater. 5 (2022) 9079, https://doi.org/10.1021/acsaem.2c01556. doi: 10.1021/acsaem.2c01556

    26. [26]

      Devaraj, M. Gu, R. Colby, P. Yan, C.M. Wang, J.M. Zheng, J. Xiao, A. Genc, J.G. Zhang, I. Belharouak, et al., Nat. Commun. 6 (2015) 8014, https://doi.org/10.1038/ncomms9014. doi: 10.1038/ncomms9014

    27. [27]

      J. Xiong, Z. Huang, S. Chen, S. Zhong, J. Electrochem. Soc. 171 (2024) 080522, https://doi.org/10.1149/1945-7111/ad6d99. doi: 10.1149/1945-7111/ad6d99

    28. [28]

      H. Peng, H. Zhuo, F. Xia, W. Zeng, C. Sun, J. Wu, Adv. Funct. Mater. 33 (2023) 2306804, https://doi.org/10.1002/adfm.202306804. doi: 10.1002/adfm.202306804

    29. [29]

      Y. Shin, H. Ding, K.A. Persson, Chem. Mater. 28 (2016) 2081, https://doi.org/10.1021/acs.chemmater.5b04862. doi: 10.1021/acs.chemmater.5b04862

    30. [30]

      W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang, P. Xu, Y. Lu, W.-Z. Huang, J.- L. Li, J.-Q. Huang, et al., Chem. Soc. 146 (2024) 28190, https://doi.org/10.1021/jacs.4c08115. doi: 10.1021/jacs.4c08115

    31. [31]

      X. Li, Y. Zhang, B. Qiu, G. Chen, Y. Zhou, Q. Gu, Z. Liu, Energy Environ. Mater. 7 (2024) e12722, https://doi.org/10.1002/eem2.12722. doi: 10.1002/eem2.12722

    32. [32]

      H. Liu, Y. Chen, S. Hy, K. An, S. Venkatachalam, D. Qian, M. Zhang, Y.S. Meng, Adv. Energy Mater. 6 (2016) 1502143, https://doi.org/10.1002/aenm.201502143. doi: 10.1002/aenm.201502143

    33. [33]

      H. Liu, W. Hua, S. Kunz, M. Bianchini, H. Li, J. Peng, J. Lin, O. Dolotko, T. Bergfeldt, K. Wang, et al., Nat. Commun. 15 (2024) 9981, https://doi.org/10.1038/s41467-024-54312-z. doi: 10.1038/s41467-024-54312-z

    34. [34]

      D. Ye, B. Wang, Y. Chen, G. Han, Z. Zhang, D. Hulicova-Jurcakova, J. Zou, L. Wang, J. Mater. Chem. A 2 (2014) 18767, https://doi.org/10.1039/c4ta03692a. doi: 10.1039/c4ta03692a

    35. [35]

      L. Zhang, D. Liu, J. Huang, J. Peng, H. Xie, B. Huang, Y. Li, Y. Sun, S. Xiao, R. Wang, J. Energy Storage 78 (2024) 110073, https://doi.org/10.1016/j.est.2023.110073. doi: 10.1016/j.est.2023.110073

    36. [36]

      Y. Zhou, H. Cui, B. Qiu, Y. Xia, C. Yin, L. Wan, Z. Shi, Z. Liu, ACS Mater. Lett. 3 (2021) 433, https://doi.org/10.1021/acsmaterialslett.1c00088. doi: 10.1021/acsmaterialslett.1c00088

    37. [37]

      W. Huang, C. Lin, M. Zhang, S. Li, Z. Chen, W. Zhao, C. Zhu, Q. Zhao, H. Chen, F. Pan, Adv. Energy Mater. 11 (2021) 2102646, https://doi.org/10.1002/aenm.202102646. doi: 10.1002/aenm.202102646

    38. [38]

      J. Hwang, S. Myeong, E. Lee, H. Jang, M. Yoon, H. Cha, J. Sung, M.G. Kim, D.H. Seo, J. Cho, Adv. Mater. 33 (2021) 2100352, https://doi.org/10.1002/adma.202100352. doi: 10.1002/adma.202100352

    39. [39]

      Q. Chen, Y. Pei, H. Chen, Y. Song, L. Zhen, C.-Y. Xu, P. Xiao, G. Henkelman, Nat. Commun. 11 (2020) 3411, https://doi.org/10.1038/s41467-020-17126-3. doi: 10.1038/s41467-020-17126-3

    40. [40]

      M. Saubanère, E. McCalla, J.-M. Tarascon, M.-L. Doublet, Energy Environ. Sci. 9 (2016) 984, https://doi.org/10.1039/c5ee03048j. doi: 10.1039/c5ee03048j

    41. [41]

      E. McCalla, A.M. Abakumov, M. Saubanère, D. Foix, E.J. Berg, G. Rousse, M.L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, Science 350 (2015) 1516, https://doi.org/10.1126/science.aac8260. doi: 10.1126/science.aac8260

    42. [42]

      Grimaud, W. Hong, Y. Shao-Horn, J.M. Tarascon, Nat. Mater. 15 (2016) 121, https://doi.org/10.1038/nmat4551. doi: 10.1038/nmat4551

    43. [43]

      Y. Xie, M. Saubanère, M.L. Doublet, Energy Environ. Sci. 10 (2017) 266, https://doi.org/10.1039/c6ee02328b. doi: 10.1039/c6ee02328b

    44. [44]

      J.-J. Marie, R.A. House, G.J. Rees, A.W. Robertson, M. Jenkins, J. Chen, S. Agrestini, M. Garcia-Fernandez, K.-J. Zhou, P.G. Bruce, Nat. Mater. 23 (2024) 818, https://doi.org/10.1038/s41563-024-01833-z. doi: 10.1038/s41563-024-01833-z

    45. [45]

      R.A. House, J.J. Marie, M.A. Perez-Osorio, G.J. Rees, E. Boivin, P.G. Bruce, Nat. Energy 6 (2021) 781, https://doi.org/10.1038/s41560-021-00780-2. doi: 10.1038/s41560-021-00780-2

    46. [46]

      Z. Chen, W. Zhang, J. Liu, M. Zhang, S. Li, F. Pan, Adv. Mater. 36 (2024) 2403307, https://doi.org/10.1002/adma.202403307. doi: 10.1002/adma.202403307

    47. [47]

      K. McColl, S.W. Coles, P. Zarabadi-Poor, B.J. Morgan, M.S. Islam, Nat. Mater. 23 (2024) 826, https://doi.org/10.1038/s41563-024-01873-5. doi: 10.1038/s41563-024-01873-5

    48. [48]

      Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T.A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, et al., Nat. Energy 3 (2018) 641, https://doi.org/10.1038/s41560-018-0184-2. doi: 10.1038/s41560-018-0184-2

    49. [49]

      W. Hua, S. Wang, M. Knapp, S.J. Leake, A. Senyshyn, C. Richter, M. Yavuz, J.R. Binder, C.P. Grey, H. Ehrenberg, et al., Nat. Commun. 10 (2019) 5365, https://doi.org/10.1038/s41467-019-13240-z. doi: 10.1038/s41467-019-13240-z

    50. [50]

      Y. Shin, W.H. Kan, M. Aykol, J.K. Papp, B.D. McCloskey, G. Chen, K.A. Persson, Nat. Commun. 9 (2018) 4597, https://doi.org/10.1038/s41467-018-07080-6. doi: 10.1038/s41467-018-07080-6

    51. [51]

      K. Ku, B. Kim, S.-K. Jung, Y. Gong, D. Eum, G. Yoon, K.-Y. Park, J. Hong, S.-P. Cho, D.-H. Kim, et al., Energy Environ. Sci. 13 (2020) 1269, https://doi.org/10.1039/c9ee04123k. doi: 10.1039/c9ee04123k

    52. [52]

      W. Liang, Y. Zhao, L. Shi, Z. Wang, S. Yuan, Angew. Chem. Int. Ed. 63 (2024) e12722, https://doi.org/10.1002/anie.202407477. doi: 10.1002/anie.202407477

    53. [53]

      J.X. Zuo, K. Zhang, J. Wang, X.F. Li, Acta Phys. Chim. Sin. 41 (2025) 100009, https://doi.org/10.3866/PKU.WHXB202404042. doi: 10.3866/PKU.WHXB202404042

    54. [54]

      X.X. Shi, S.X. Liao, B. Yuan, Y.J. Zhong, B.H. Zhong, H. Liu, X.D. Guo, Acta Phys. Chim. Sin. 31 (2015) 1527, https://doi.org/10.3866/PKU.WHXB201506151. doi: 10.3866/PKU.WHXB201506151

    55. [55]

      P. Barai, Z. Feng, H. Kondo, V. Srinivasan, J. Phys. Chem. B 123 (2019) 3291, https://doi.org/10.1021/acs.jpcb.8b12004. doi: 10.1021/acs.jpcb.8b12004

    56. [56]

      F. Cheng, Y. Xin, J. Chen, L. Lu, X. Zhang, H. Zhou, J. Mater. Chem. A 1 (2013) 5301, https://doi.org/10.1039/c3ta00153a. doi: 10.1039/c3ta00153a

    57. [57]

      P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu, Y. Liu, S.-J. Ahn, E. Kaeli, X. Xu, K.H. Stone, et al., Nat. Energy 6 (2021) 642, https://doi.org/10.1038/s41560-021-00832-7. doi: 10.1038/s41560-021-00832-7

    58. [58]

      Y. Zhang, C. Yin, B. Qiu, G. Chen, Y. Shang, Z. Liu, Energy Storage Mater. 53 (2022) 763, https://doi.org/10.1016/j.ensm.2022.10.008. doi: 10.1016/j.ensm.2022.10.008

    59. [59]

      L. Chen, Y. Su, S. Chen, N. Li, L. Bao, W. Li, Z. Wang, M. Wang, F. Wu, Adv. Mater. 26 (2014) 6756, https://doi.org/10.1002/adma.201402541. doi: 10.1002/adma.201402541

    60. [60]

      D. Wang, Y. Wu, C. Wu, Z. Ye, L. Yang, Y. Li, R. Dong, Z. Wu, Y. Sun, Y. Song, et al., Interfaces 14 (2022) 2711, https://doi.org/10.1021/acsami.1c18651. doi: 10.1021/acsami.1c18651

    61. [61]

      H. Choi, A.R. Schuer, H. Moon, M. Kuenzel, S. Passerini, Electrochim. Acta 430 (2022) 141047, https://doi.org/10.1016/j.electacta.2022.141047. doi: 10.1016/j.electacta.2022.141047

    62. [62]

      S. Xu, Z. Chen, W. Zhao, W. Ren, C. Hou, J. Liu, W. Wang, C. Yin, X. Tan, X. Lou, et al., Energy Environ. Sci. 17 (2024) 4327, https://doi.org/10.1039/d4ee90043j. doi: 10.1039/d4ee90043j

    63. [63]

      Gutierrez, J.T. Kirner, M.T. Saray, M. Avdeev, L.X. Geng, R.S. Yassar, W.Q. Lu, J. Croy, J. Electrochem. Soc. 169 (2022) 020574, https://doi.org/10.1149/1945-7111/ac5545. doi: 10.1149/1945-7111/ac5545

    64. [64]

      N.H. Vu, P. Arunkumar, J.C. Im, D.T. Ngo, H.T.T. Le, C.-J. Park, W.B. Im, J. Mater. Chem. A 5 (2017) 15730, https://doi.org/10.1039/c7ta04002d. doi: 10.1039/c7ta04002d

    65. [65]

      J. Sun, X. Cao, W. Yang, E. Yoo, H. Zhou, J. Mater. Chem. A 11 (2023) 13956, https://doi.org/10.1039/d3ta01624b. doi: 10.1039/d3ta01624b

    66. [66]

      L. Nie, C. Liang, S. Chen, Y. He, W. Liu, H. Zhao, T. Gao, Z. Sun, Q. Hu, Y. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 13281, https://doi.org/10.1021/acsami.1c00723. doi: 10.1021/acsami.1c00723

    67. [67]

      Z. Cai, S. Wang, H. Zhu, X. Tang, Y. Ma, D.Y.W. Yu, S. Zhang, G. Song, W. Yang, Y. Xu, et al., Colloid Interface Sci. 630 (2023) 281, https://doi.org/10.1016/j.jcis.2022.10.105. doi: 10.1016/j.jcis.2022.10.105

    68. [68]

      K. Gu, Z. Shi, X. Li, B. Qiu, Z. Liu, J. Mater. Chem. A 12 (2024) 24727, https://doi.org/10.1039/d4ta03917c. doi: 10.1039/d4ta03917c

    69. [69]

      G. Choi, U. Chang, J. Lee, K. Park, H. Kwon, H. Lee, Y.-I. Kim, J.H. Seo, Y.-C. Park, I. Park, et al., Energy Environ. Sci. 17 (2024) 4634, https://doi.org/10.1039/d4ee00487f. doi: 10.1039/d4ee00487f

    70. [70]

      T. Li, Z. Shi, L. Li, Y. Zhang, Y. Li, J. Zhao, Q. Gu, W. Wen, B. Qiu, Z. Liu, Chem. Eng. J. 474 (2023) 145728, https://doi.org/10.1016/j.cej.2023.145728. doi: 10.1016/j.cej.2023.145728

    71. [71]

      Z. Wei, Z. Shi, X. Wen, X. Li, B. Qiu, Q. Gu, J. Sun, Y. Han, H. Luo, H. Guo, et al., Mater. Today Energy 27 (2022) 101039, https://doi.org/10.1016/j.mtener.2022.101039. doi: 10.1016/j.mtener.2022.101039

    72. [72]

      L. Wang, S. Zhao, B. Wang, H. Yu, J. Energy Chem. 81 (2023) 110, https://doi.org/10.1016/j.jechem.2023.02.034. doi: 10.1016/j.jechem.2023.02.034

    73. [73]

      M. Tabuchi, M. Kitta, K. Yazawa, K. Kubota, J. Electrochem. Soc. 168 (2021) 110525, https://doi.org/10.1149/1945-7111/ac3526. doi: 10.1149/1945-7111/ac3526

    74. [74]

      J. Li, W. Li, C. Zhang, C. Han, X. Chen, H. Zhao, H. Xu, G. Jia, Z. Li, J. Li, et al., ACS Nano 17 (2023) 16827, https://doi.org/10.1021/acsnano.3c03666. doi: 10.1021/acsnano.3c03666

    75. [75]

      J. Meng, H. Xu, Q. Ma, Z. Li, L. Xu, Z. Chen, B. Cheng, S. Zhong, Electrochim. Acta 309 (2019) 326, https://doi.org/10.1016/j.electacta.2019.04.040. doi: 10.1016/j.electacta.2019.04.040

    76. [76]

      L. Zeng, H. Liang, Y. Wang, X. Ying, B. Qiu, J. Pan, Y. Zhang, W. Wen, X. Wang, Q. Gu, et al., Energy Environ. Sci. 18 (2025) 284, https://doi.org/10.1039/d4ee02511c. doi: 10.1039/d4ee02511c

    77. [77]

      F. Wu, G.T. Kim, M. Kuenzel, H. Zhang, J. Asenbauer, D. Geiger, U. Kaiser, S. Passerini, Adv. Energy Mater. 9 (2019) 1902445, https://doi.org/10.1002/aenm.201902445. doi: 10.1002/aenm.201902445

    78. [78]

      X.Z. Ren, T. Liu, L.N. Sun, P.X. Zhang, Acta Phys. Chim. Sin. 30 (2014) 1641, https://doi.org/10.3866/PKU.WHXB201406172. doi: 10.3866/PKU.WHXB201406172

    79. [79]

      B. Zhang, Y. Zhang, X. Wang, H. Liu, Y. Yan, S. Zhou, Y. Tang, G. Zeng, X. Wu, H.- G. Liao, et al., J. Am. Chem. Soc. 145 (2023) 8700, https://doi.org/10.1021/jacs.3c01999. doi: 10.1021/jacs.3c01999

    80. [80]

      C.-C. Wang, A. Manthiram, J. Mater. Chem. A 1 (2013) 10209, https://doi.org/10.1039/c3ta11703k. doi: 10.1039/c3ta11703k

    81. [81]

      T. Sudayama, K. Uehara, T. Mukai, D. Asakura, X.M. Shi, A. Tsuchimoto, B.M. de Boisse, T. Shimada, E. Watanabe, Y. Harada, et al., Energy Environ. Sci. 13 (2020) 1492, https://doi.org/10.1039/c9ee04197d. doi: 10.1039/c9ee04197d

    82. [82]

      X. Sun, C. Qin, B. Zhao, S. Jia, Z. Wang, T. Yang, X. Liu, L. Pan, L. Zheng, D. Luo, et al., Energy Storage Mater 70 (2024) 103559, https://doi.org/10.1016/j.ensm.2024.103559. doi: 10.1016/j.ensm.2024.103559

    83. [83]

      D. Liu, X. Fan, Z. Li, T. Liu, M. Sun, C. Qian, M. Ling, Y. Liu, C. Liang, Nano Energy 58 (2019) 786, https://doi.org/10.1016/j.nanoen.2019.01.080. doi: 10.1016/j.nanoen.2019.01.080

    84. [84]

      H. Liu, B. He, W. Xiang, Y.-C. Li, C. Bai, Y.-P. Liu, W. Zhou, X. Chen, Y. Liu, S. Gao, et al., Nanotechnology 31 (2020) 455704, https://doi.org/10.1088/1361-6528/ab9579. doi: 10.1088/1361-6528/ab9579

    85. [85]

      U. Maitra, R.A. House, J.W. Somerville, N. Tapia-Ruiz, J.G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M.A. Perez-Osorio, et al., Nat. Chem. 10 (2018) 288, https://doi.org/10.1038/nchem.2923. doi: 10.1038/nchem.2923

    86. [86]

      X. Bai, M. Sathiya, B. Mendoza-Sanchez, A. Iadecola, J. Vergnet, R. Dedryvère, M. Saubanèere, A.M. Abakumov, P. Rozier, J.M. Tarascon, Adv. Energy Mater. 8 (2018) 1802379, https://doi.org/10.1002/aenm.201802379. doi: 10.1002/aenm.201802379

    87. [87]

      Y. Liu, D. Liu, H.-H. Wu, X. Fan, A. Dou, Q. Zhang, M. Su, ACS Sustain. Chem. Eng. 6 (2018) 13045, https://doi.org/10.1021/acssuschemeng.8b02552. doi: 10.1021/acssuschemeng.8b02552

    88. [88]

      Y. Cheng, Z. Wu, X. Dai, J. Hu, Z. Tai, J. Sun, Y. Liu, Q. Tan, Y. Liu, J. Colloid Interface Sci. 605 (2022) 718, https://doi.org/10.1016/j.jcis.2021.07.141. doi: 10.1016/j.jcis.2021.07.141

    89. [89]

      Y. Liu, X. Fan, Z. Zhang, H.-H. Wu, D. Liu, A. Dou, M. Su, Q. Zhang, D. Chu, ACS Sustain. Chem. Eng. 7 (2018) 2225, https://doi.org/10.1021/acssuschemeng.8b04905. doi: 10.1021/acssuschemeng.8b04905

    90. [90]

      G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, J. Electrochem. Soc. 159 (2012) A410, https://doi.org/10.1149/2.059204jes. doi: 10.1149/2.059204jes

    91. [91]

      S.D. Zhang, Y. Liu, M.Y. Qi, A.M. Cao, Acta Phys. Chim. Sin. 37 (2021) 2011007, https://doi.org/10.3866/PKU.WHXB202011007. doi: 10.3866/PKU.WHXB202011007

    92. [92]

      M. Yang, B. Hu, F. Geng, C. Li, X. Lou, B. Hu, Electrochim. Acta 291 (2018) 278, https://doi.org/10.1016/j.electacta.2018.09.134. doi: 10.1016/j.electacta.2018.09.134

    93. [93]

      Y.-S. Jiang, G. Sun, F.-D. Yu, L.-F. Que, L. Deng, X.-H. Meng, Z.-B. Wang, Ionics 26 (2019) 151, https://doi.org/10.1007/s11581-019-03202-2. doi: 10.1007/s11581-019-03202-2

    94. [94]

      Z. Sun, L. Xu, C. Dong, H. Zhang, M. Zhang, Y. Ma, Y. Liu, Z. Li, Y. Zhou, Y. Han, et al., Nano Energy 63 (2019) 103887, https://doi.org/10.1016/j.nanoen.2019.103887. doi: 10.1016/j.nanoen.2019.103887

    95. [95]

      R.A. House, J.-J. Marie, J. Park, G.J. Rees, S. Agrestini, A. Nag, M. GarciaFernandez, K.-J. Zhou, P.G. Bruce, Nat. Commun. 12 (2021) 2975, https://doi.org/10.1038/s41467-021-23154-4. doi: 10.1038/s41467-021-23154-4

    96. [96]

      K.N. Zhao, X. Li, D. Su, Acta Phys. Chim. Sin. 37 (2021) 2009077, https://doi.org/10.3866/PKU.WHXB202009077. doi: 10.3866/PKU.WHXB202009077

    97. [97]

      S. Sun, C.Z. Zhao, H. Yuan, Z.H. Fu, X. Chen, Y. Lu, Y.F. Li, J.K. Hu, J.C. Dong, J.Q. Huang, et al., Sci. Adv. 8 (2022) eadd5189, https://doi.org/10.1126/sciadv.add5189. doi: 10.1126/sciadv.add5189

    98. [98]

      Z. Zhu, R. Gao, I. Waluyo, Y. Dong, A. Hunt, J. Lee, J. Li, Adv. Energy Mater. 10 (2020) 2001120, https://doi.org/10.1002/aenm.202001120. doi: 10.1002/aenm.202001120

    99. [99]

      L. He, J.M. Xu, Y.J. Wang, C.J. Zhang, Acta Phys. Chim. Sin. 33 (2017) 1605, https://doi.org/10.3866/PKU.WHXB201704145. doi: 10.3866/PKU.WHXB201704145

    100. [100]

      S. Chong, Y. Chen, W. Yan, S. Guo, Q. Tan, Y. Wu, T. Jiang, Y. Liu, J. Power Sources 332 (2016) 230, https://doi.org/10.1016/j.jpowsour.2016.09.028. doi: 10.1016/j.jpowsour.2016.09.028

    101. [101]

      H. Liu, D. Qian, M.G. Verde, M. Zhang, L. Baggetto, K. An, Y. Chen, K.J. Carroll, D. Lau, M. Chi, et al., ACS Appl. Mater. Interfaces 7 (2015) 19189, https://doi.org/10.1021/acsami.5b04932. doi: 10.1021/acsami.5b04932

    102. [102]

      Q.R. Xue, J.L. Li, G.F. Xu, P.F. Hou, G. Yan, Y. Dai, X.D. Wang, F. Gao, Acta Phys. Chim. Sin. 30 (2014) 1667, https://doi.org/10.3866/PKU.WHXB201406251. doi: 10.3866/PKU.WHXB201406251

    103. [103]

      Y. Liu, X. Fan, X. Huang, D. Liu, A. Dou, M. Su, D. Chu, J. Power Sources 403 (2018) 27, https://doi.org/10.1016/j.jpowsour.2018.09.082. doi: 10.1016/j.jpowsour.2018.09.082

    104. [104]

      Y. Liu, Q. Wang, X. Wang, T. Wang, Y. Gao, M. Su, A. Dou, Ionics 21 (2015) 2725, https://doi.org/10.1007/s11581-015-1484-1. doi: 10.1007/s11581-015-1484-1

    105. [105]

      Y. Li, Z. Shi, B. Qiu, J. Zhao, X. Li, Y. Zhang, T. Li, Q. Gu, J. Gao, Z. Liu, Adv. Funct. Mater. 33 (2023) 2302236, https://doi.org/10.1002/adfm.202302236. doi: 10.1002/adfm.202302236

    106. [106]

      C.-C. Wang, J.-W. Lin, Y.-H. Yu, K.-H. Lai, K.-F. Chiu, C.-C. Kei, ACS Sustain. Chem. Eng. 6 (2018) 16941, https://doi.org/10.1021/acssuschemeng.8b04285. doi: 10.1021/acssuschemeng.8b04285

    107. [107]

      K. Zhang, J. Qi, J. Song, Y. Zuo, Y. Yang, T. Yang, T. Chen, X. Liu, L. Chen, D. Xia, Adv. Mater. 34 (2022), https://doi.org/10.1002/adma.202109564. doi: 10.1002/adma.202109564

    108. [108]

      Z. Xu, X. Guo, W. Song, J. Wang, T. Qin, Y. Yuan, J. Lu, Adv. Mater. 36 (2023) 2303612, https://doi.org/10.1002/adma.202303612. doi: 10.1002/adma.202303612

    109. [109]

      L. Zeng, H. Liang, B. Qiu, Z. Shi, S. Cheng, K. Shi, Q. Liu, Z. Liu, Adv. Funct. Mater. 33 (2023) 2213260, https://doi.org/10.1002/adfm.202213260. doi: 10.1002/adfm.202213260

    110. [110]

      D. Mohanty, J. Li, D.P. Abraham, A. Huq, E.A. Payzant, D.L. Wood, C. Daniel, Chem. Mater. 26 (2014) 6272, https://doi.org/10.1021/cm5031415. doi: 10.1021/cm5031415

    111. [111]

      H. Dong, D. Jiang, S. Xing, L. Zhao, L. Hu, J. Mao, H. Zhang, Small 20 (2023) 2307156, https://doi.org/10.1002/smll.202307156. doi: 10.1002/smll.202307156

    112. [112]

      Y. Zhang, X. Shi, S. Zheng, Y. Ouyang, M. Li, C. Meng, Y. Yu, Z.-S. Wu, Energy Environ. Sci. 16 (2023) 5043, https://doi.org/10.1039/d3ee01318a. doi: 10.1039/d3ee01318a

    113. [113]

      X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, J.N. Zhang, X.Q. Yu, Y.G. Guo, Adv. Mater. 30 (2018) 1801751, https://doi.org/10.1002/adma.201801751. doi: 10.1002/adma.201801751

    114. [114]

      W. Guo, C. Zhang, Y. Zhang, L. Lin, W. He, Q. Xie, B. Sa, L. Wang, D.L. Peng, Adv. Mater. 33 (2021), https://doi.org/10.1002/adma.202103173. doi: 10.1002/adma.202103173

    115. [115]

      Y. Ouyang, Y. Zhang, G. Wang, X. Wei, A. Zhang, J. Sun, S. Wei, L. Song, F. Dai, Z.S. Wu, Adv. Funct. Mater. 34 (2024) 2401249, https://doi.org/10.1002/adfm.202401249. doi: 10.1002/adfm.202401249

    116. [116]

      F. Klein, C. Pfeifer, J. Bansmann, Z. Jusys, R.J. Behm, M. Wohlfahrt-Mehrens, M. Linden, P. Axmann, J. Electrochem. Soc. 169 (2022) 120533, https://doi.org/10.1149/1945-7111/acaa5c. doi: 10.1149/1945-7111/acaa5c

    117. [117]

      H. Xie, L. Tan, Z. Yao, J. Cui, X. Ding, Z. Zhang, D. Luo, Z. Lin, ACS Appl. Mater. Interfaces 15 (2023) 2881, https://doi.org/10.1021/acsami.2c17534. doi: 10.1021/acsami.2c17534

    118. [118]

      Z. Yang, H. Zhou, Z. Bao, J. Li, C. Yin, J. Mater. Sci. Mater. Electron. 30 (2019) 19493, https://doi.org/10.1007/s10854-019-02315-8. doi: 10.1007/s10854-019-02315-8

    119. [119]

      B. Wu, X. Yang, X. Jiang, Y. Zhang, H. Shu, P. Gao, L. Liu, X. Wang, Adv. Funct. Mater. 28 (2018) 1803392, https://doi.org/10.1002/adfm.201803392. doi: 10.1002/adfm.201803392

    120. [120]

      Z. Zhu, D. Yu, Y. Yang, C. Su, Y. Huang, Y. Dong, I. Waluyo, B. Wang, A. Hunt, X. Yao, et al., Nat. Energy 4 (2019) 1049, https://doi.org/10.1038/s41560-019-0508-x. doi: 10.1038/s41560-019-0508-x

    121. [121]

      Y. Pei, Q. Chen, M. Wang, B. Li, P. Wang, G. Henkelman, L. Zhen, G. Cao, C.-Y. Xu, Nano Energy 71 (2020) 104644, https://doi.org/10.1016/j.nanoen.2020.104644. doi: 10.1016/j.nanoen.2020.104644

    122. [122]

      B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, et al., Nat. Commun. 7 (2016) 12108, https://doi.org/10.1038/ncomms12108. doi: 10.1038/ncomms12108

    123. [123]

      K. Wang, J. Qiu, F. Hou, M. Yang, K. Nie, J. Wang, Y. Hou, W. Huang, W. Zhao, P. Zhang, et al., Adv. Energy Mater. 13 (2023) 2301216, https://doi.org/10.1002/aenm.202301216. doi: 10.1002/aenm.202301216

    124. [124]

      L. Bao, L. Wei, N. Fu, J. Dong, L. Chen, Y. Su, N. Li, Y. Lu, Y. Li, S. Chen, et al., Energy Chem. 66 (2022) 123, https://doi.org/10.1016/j.jechem.2021.07.023. doi: 10.1016/j.jechem.2021.07.023

    125. [125]

      Y. Fang, Y. Su, J. Dong, J. Zhao, H. Wang, Y. Lu, B. Zhang, H. Yan, F. Wu, L. Chen, J. Energy Chem. 92 (2024) 250, https://doi.org/10.1016/j.jechem.2023.12.050. doi: 10.1016/j.jechem.2023.12.050

    126. [126]

      X. Tan, R. Liu, C.X. Xie, Q. Shen, J. Power Sources 374 (2018) 134, https://doi.org/10.1016/j.jpowsour.2017.11.004. doi: 10.1016/j.jpowsour.2017.11.004

    127. [127]

      T. Nakamura, K. Ohta, Y. Kimura, K. Tsuruta, Y. Tamenori, R. Aso, H. Yoshida, K. Amezawa, ACS Appl. Energy Mater. 3 (2020) 9703, https://doi.org/10.1021/acsaem.0c01303. doi: 10.1021/acsaem.0c01303

    128. [128]

      Zhu, J. Wu, B. Wang, J. Zhou, Y. Zhang, Y. Guo, K. Wu, H. Wu, Q. Wang, Y. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 61248, https://doi.org/10.1021/acsami.1c19399. doi: 10.1021/acsami.1c19399

    129. [129]

      S. Kim, W. Cho, X. Zhang, Y. Oshima, J.W. Choi, Nat. Commun. 7 (2016) 13598, https://doi.org/10.1038/ncomms13598. doi: 10.1038/ncomms13598

    130. [130]

      Z.K. Hao, H.X. Sun, Y.X. Ni, G.J. Yang, Z. Yang, Z.M. Hao, R.H. Wang, P.K. Yang, Y. Lu, Q. Zhao, et al., Adv. Mater. 36 (2023) 2307617, https://doi.org/10.1002/adma.202307617. doi: 10.1002/adma.202307617

    131. [131]

      Y. Li, C. Wu, Y. Bai, L. Liu, H. Wang, F. Wu, N. Zhang, Y. Zou, ACS Appl. Mater. Interfaces 8 (2016) 18832, https://doi.org/10.1021/acsami.6b04687. doi: 10.1021/acsami.6b04687

    132. [132]

      L. Wang, Y. Chen, X. Wen, J. Li, P. Meng, S. Tao, Sustain. Energy Technol. Assessments 52 (2022) 102006, https://doi.org/10.1016/j.seta.2022.102006. doi: 10.1016/j.seta.2022.102006

    133. [133]

      L. Li, L. Wang, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, ACS Appl. Mater. Interfaces 9 (2017) 1516, https://doi.org/10.1021/acsami.6b13229. doi: 10.1021/acsami.6b13229

    134. [134]

      C. Huang, Z.-Q. Fang, Z.-J. Wang, J.-W. Zhao, S.-X. Zhao, L.-J. Ci, Nanoscale 13 (2021) 4921, https://doi.org/10.1039/d0nr08980j. doi: 10.1039/d0nr08980j

    135. [135]

      Y. Liu, J. Lv, S. Liu, L. Chen, X. Chen, Powder Technol. 239 (2013) 461, https://doi.org/10.1016/j.powtec.2013.02.039. doi: 10.1016/j.powtec.2013.02.039

    136. [136]

      J. Xu, L. Kaufman, F.C. Robles Hernandez, A. Pramanik, G. Babu, J. Nanda, B.D. McCloskey, P.M. Ajayan, ACS Appl. Energy Mater. 6 (2023) 5026, https://doi.org/10.1021/acsaem.3c00630. doi: 10.1021/acsaem.3c00630

    137. [137]

      Z. Qi, J. Tang, J. Huang, D. Zemlyanov, V.G. Pol, H. Wang, ACS Appl. Energy Mater. 2 (2019) 3461, https://doi.org/10.1021/acsaem.9b00259. doi: 10.1021/acsaem.9b00259

    138. [138]

      X. Ju, H. Huang, W. He, H. Zheng, P. Deng, S. Li, B. Qu, T. Wang, ACS Sustain. Chem. Eng. 6 (2018) 6312, https://doi.org/10.1021/acssuschemeng.8b00126. doi: 10.1021/acssuschemeng.8b00126

    139. [139]

      Y. Sun, H. Cong, L. Zan, Y. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 38545, https://doi.org/10.1021/acsami.7b12080. doi: 10.1021/acsami.7b12080

    140. [140]

      F. Wang, S. Xiao, M. Li, X. Wang, Y. Zhu, Y. Wu, A. Shirakawa, J.J. Peng, Power Sources 287 (2015) 416, https://doi.org/10.1016/j.jpowsour.2015.04.034. doi: 10.1016/j.jpowsour.2015.04.034

    141. [141]

      M. Abe, F. Matsumoto, M. Saito, H. Yamamura, G. Kobayashi, A. Ito, T. Sanada, M. Hatano, Y. Ohsawa, Y. Sato, Chem. Lett. 41 (2012) 418, https://doi.org/10.1246/cl.2012.418. doi: 10.1246/cl.2012.418

    142. [142]

      M. Wang, C. Ke, H. Zhang, C. Hou, J. Chen, S. Liu, J. Wang, Nano Lett. 24 (2024) 12343, https://doi.org/10.1021/acs.nanolett.4c01532. doi: 10.1021/acs.nanolett.4c01532

    143. [143]

      E. Yin, A. Grimaud, G. Rousse, A. Abakumov, A. Senyshyn, L. Zhang, S. Trabesinger, A. Iadecola, D. Foix, D. Giaume, et al., Nat. Commun. 11 (2020) 1252, https://doi.org/10.1038/s41467-020-14927-4. doi: 10.1038/s41467-020-14927-4

    144. [144]

      J.-C. Li, J. Tang, J. Tian, C. Cheng, Y. Liao, B. Hu, T. Yu, H. Li, Z. Liu, Y. Rao, et al., J. Am. Chem. Soc. 146 (2024) 7274, https://doi.org/10.1021/jacs.3c11569. doi: 10.1021/jacs.3c11569

    145. [145]

      S. Myeong, W. Cho, W. Jin, J. Hwang, M. Yoon, Y. Yoo, G. Nam, H. Jang, J.- G. Han, N.-S. Choi, et al., Nat. Commun. 9 (2018) 3285, https://doi.org/10.1038/s41467-018-05802-4. doi: 10.1038/s41467-018-05802-4

    146. [146]

      J. Zhang, F. Cheng, S. Chou, J. Wang, L. Gu, H. Wang, H. Yoshikawa, Y. Lu, J. Chen, Adv. Mater. 31 (2019) 1901808, https://doi.org/10.1002/adma.201901808. doi: 10.1002/adma.201901808

    147. [147]

      J. Song, B. Li, Y. Chen, Y. Zuo, F. Ning, H. Shang, G. Feng, N. Liu, C. Shen, X. Ai, et al., Adv. Mater. 32 (2020) 2000190, https://doi.org/10.1002/adma.202000190. doi: 10.1002/adma.202000190

    148. [148]

      Q. Li, D. Ning, D. Wong, K. An, Y. Tang, D. Zhou, G. Schuck, Z. Chen, N. Zhang, X. Liu, Nat. Commun. 13 (2022) 1123, https://doi.org/10.1038/s41467-022-8793-9. doi: 10.1038/s41467-022-8793-9

    149. [149]

      T. Cui, J. Xu, X. Wang, L. Liu, Y. Xiang, H. Zhu, X. Li, Y. Fu, Nat. Commun. 15 (2024) 4742, https://doi.org/10.1038/s41467-024-48890-1. doi: 10.1038/s41467-024-48890-1

    150. [150]

      C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang, L. Ma, C. Yang, E. Hu, X.-Q. Yang, C. Wang, J. Am. Chem. Soc. 142 (2020) 8918, https://doi.org/10.1021/jacs.0c02302. doi: 10.1021/jacs.0c02302

    151. [151]

      X. Zhong, M. Oubla, X. Wang, Y. Huang, H. Zeng, S. Wang, K. Liu, J. Zhou, L. He, H. Zhong, et al., Nat. Commun. 12 (2021) 3136, https://doi.org/10.1038/s41467-021-23430-3. doi: 10.1038/s41467-021-23430-3

    152. [152]

      W. Huang, C. Lin, J. Qiu, S. Li, Z. Chen, H. Chen, W. Zhao, G. Ren, X. Li, M. Zhang, et al., Chem 8 (2022) 2163, https://doi.org/10.1016/j.chempr.2022.04.012. doi: 10.1016/j.chempr.2022.04.012

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  28
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2025-08-15
  • 收稿日期:  2025-02-17
  • 接受日期:  2025-03-27
  • 修回日期:  2025-03-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章