
Citation: Liangliang Song, Haoyan Liang, Shunqing Li, Bao Qiu, Zhaoping Liu. Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries[J]. Acta Physico-Chimica Sinica, 2025, 41(8): 100085. doi: 10.1016/j.actphy.2025.100085

超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略
English
Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries

-
-
[1]
J.M. Tarascon, M. Armand, Nature 414 (2001) 359, https://doi.org/10.1038/35104644. doi: 10.1038/35104644
-
[2]
Y.M. Chiang, Science 330 (2010) 1485, https://doi.org/10.1126/science.1198591. doi: 10.1126/science.1198591
-
[3]
S. Jiao, J. Wang, Y.-S. Hu, X. Yu, H. Li, ACS Energy Lett. 8 (2023) 3025, https://doi.org/10.1021/acsenergylett.3c00563. doi: 10.1021/acsenergylett.3c00563
-
[4]
Y. Zhang, X. Wen, Z. Shi, B. Qiu, G. Chen, Z. Liu, J. Energy Chem. 82 (2023) 259, https://doi.org/10.1016/j.jechem.2023.03.005. doi: 10.1016/j.jechem.2023.03.005
-
[5]
C. Yin, L. Wan, B. Qiu, F. Wang, W. Jiang, H. Cui, J. Bai, S. Ehrlich, Z. Wei, Z. Liu, Energy Storage Mater. 35 (2021) 388, https://doi.org/10.1016/j.ensm.2020.11.034. doi: 10.1016/j.ensm.2020.11.034
-
[6]
B. Qiu, M. Zhang, S.-Y. Lee, H. Liu, T.A. Wynn, L. Wu, Y. Zhu, W. Wen, C.M. Brown, D. Zhou, et al., Cell Rep. Phys. Sci. 1 (2020) 100028, https://doi.org/10.1016/j.xcrp.2020.100028. doi: 10.1016/j.xcrp.2020.100028
-
[7]
J. Xu, S. Zhu, Z. Xu, H. Zhu, Comput. Mater. Sci. 229 (2023) 112426, https://doi.org/10.1016/j.commatsci.2023.112426. doi: 10.1016/j.commatsci.2023.112426
-
[8]
J. Hwang, S. Myeong, W. Jin, H. Jang, G. Nam, M. Yoon, S.H. Kim, S.H. Joo, S.K. Kwak, M.G. Kim, et al., Adv. Mater. 32 (2020) 2001944, https://doi.org/10.1002/adma.202001944. doi: 10.1002/adma.202001944
-
[9]
X. Wen, C. Yin, B. Qiu, L. Wan, Y. Zhou, Z. Wei, Z. Shi, X. Huang, Q. Gu, Z. Liu, J. Power Sources 523 (2022) 231022, https://doi.org/10.1016/j.jpowsour.2022.231022. doi: 10.1016/j.jpowsour.2022.231022
-
[10]
Y.T. Ma, P.F. Liu, Q.S. Xie, G.B. Zhang, H.F. Zheng, Y.X. Cai, Z. Li, L.S. Wang, Z.Z. Zhu, L.Q. Mai, et al., Nano Energy 59 (2019) 184, https://doi.org/10.1016/j.nanoen.2019.02.040. doi: 10.1016/j.nanoen.2019.02.040
-
[11]
X. Guo, J. Li, Y. Zhang, X. Zhang, J. Liu, W. Li, L. Lu, G. Jia, S. An, X. Qiu, Nano Energy 123 (2024) 109390, https://doi.org/10.1016/j.nanoen.2024.109390. doi: 10.1016/j.nanoen.2024.109390
-
[12]
X. Li, Q. Gu, B. Qiu, C. Yin, Z. Wei, W. Wen, Y. Zhang, Y. Zhou, H. Gao, H. Liang, et al., Mater. Today 61 (2022) 91, https://doi.org/10.1016/j.mattod.2022.09.013. doi: 10.1016/j.mattod.2022.09.013
-
[13]
H. Hafiz, K. Suzuki, B. Barbiellini, N. Tsuji, N. Yabuuchi, K. Yamamoto, Y. Orikasa, Y. Uchimoto, Y. Sakurai, H. Sakurai, et al., Nature 594 (2021) 213, https://doi.org/10.1038/s41586-021-03509-z. doi: 10.1038/s41586-021-03509-z
-
[14]
B. Qiu, M. Zhang, Y. Xia, Z. Liu, Y.S. Meng, Chem. Mater. 29 (2017) 908, https://doi.org/10.1021/acs.chemmater.6b04815. doi: 10.1021/acs.chemmater.6b04815
-
[15]
D.H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 8 (2016) 692, https://doi.org/10.1038/nchem.2524. doi: 10.1038/nchem.2524
-
[16]
M. Okubo, A. Yamada, ACS Appl. Mater. Interfaces 9 (2017) 36463, https://doi.org/10.1021/acsami.7b09835. doi: 10.1021/acsami.7b09835
-
[17]
L. Pauling, J. Am. Chem. Soc. 51 (1929) 1010, https://doi.org/10.1021/ja01379a006. doi: 10.1021/ja01379a006
-
[18]
J. Rana, J.K. Papp, Z. Lebens-Higgins, M. Zuba, L.A. Kaufman, A. Goel, R. Schmuch, M. Winter, M.S. Whittingham, W. Yang, et al., ACS Energy Lett. 5 (2020) 634, https://doi.org/10.1021/acsenergylett.9b02799. doi: 10.1021/acsenergylett.9b02799
-
[19]
L. Chen, S. Chen, D.Z. Hu, Y.F. Su, W.K. Li, Z. Wang, L.Y. Bao, F. Wu, Acta Phys. Chim. Sin. 30 (2014) 467, https://doi.org/10.3866/PKU.WHXB201312252. doi: 10.3866/PKU.WHXB201312252
-
[20]
C. Yin, Z. Wei, M. Zhang, B. Qiu, Y. Zhou, Y. Xiao, D. Zhou, L. Yun, C. Li, Q. Gu, et al., Mater. Today 51 (2021) 15, https://doi.org/10.1016/j.mattod.2021.10.020. doi: 10.1016/j.mattod.2021.10.020
-
[21]
B. Li, Z. Zhuo, L. Zhang, A. Iadecola, X. Gao, J. Guo, W. Yang, A.V. Morozov, A.M. Abakumov, J.-M. Tarascon, Nat. Mater. 22 (2023) 1370, https://doi.org/10.1038/s41563-023-01679-x. doi: 10.1038/s41563-023-01679-x
-
[22]
X. Wu, Y. Jiang, X. Lou, Y. Liu, J. Li, J. Li, B. Hu, C. Li, ACS Nano 18 (2024) 20716, https://doi.org/10.1021/acsnano.4c06932. doi: 10.1021/acsnano.4c06932
-
[23]
B. Li, M.T. Sougrati, G. Rousse, A. Morozov, R. Dedryvère, A. Iadecola, A. Senyshyn, L.T. Zhang, A.M. Abakumov, M.L. Doublet, Nat. Chem. 13 (2021) 1070, https://doi.org/10.1038/s41557-021-00775-2. doi: 10.1038/s41557-021-00775-2
-
[24]
B. Li, K. Kumar, I. Roy, A.V. Morozov, O.V. Emelyanova, L. Zhang, T. Koç, S. Belin, J. Cabana, R. Dedryvère, et al., Nat. Mater. 21 (2022) 1165, https://doi.org/10.1038/s41563-022-01278-2. doi: 10.1038/s41563-022-01278-2
-
[25]
X. Wen, B. Qiu, H. Gao, X. Li, Z. Shi, Z. Liu, ACS Appl. Energy Mater. 5 (2022) 9079, https://doi.org/10.1021/acsaem.2c01556. doi: 10.1021/acsaem.2c01556
-
[26]
Devaraj, M. Gu, R. Colby, P. Yan, C.M. Wang, J.M. Zheng, J. Xiao, A. Genc, J.G. Zhang, I. Belharouak, et al., Nat. Commun. 6 (2015) 8014, https://doi.org/10.1038/ncomms9014. doi: 10.1038/ncomms9014
-
[27]
J. Xiong, Z. Huang, S. Chen, S. Zhong, J. Electrochem. Soc. 171 (2024) 080522, https://doi.org/10.1149/1945-7111/ad6d99. doi: 10.1149/1945-7111/ad6d99
-
[28]
H. Peng, H. Zhuo, F. Xia, W. Zeng, C. Sun, J. Wu, Adv. Funct. Mater. 33 (2023) 2306804, https://doi.org/10.1002/adfm.202306804. doi: 10.1002/adfm.202306804
-
[29]
Y. Shin, H. Ding, K.A. Persson, Chem. Mater. 28 (2016) 2081, https://doi.org/10.1021/acs.chemmater.5b04862. doi: 10.1021/acs.chemmater.5b04862
-
[30]
W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang, P. Xu, Y. Lu, W.-Z. Huang, J.- L. Li, J.-Q. Huang, et al., Chem. Soc. 146 (2024) 28190, https://doi.org/10.1021/jacs.4c08115. doi: 10.1021/jacs.4c08115
-
[31]
X. Li, Y. Zhang, B. Qiu, G. Chen, Y. Zhou, Q. Gu, Z. Liu, Energy Environ. Mater. 7 (2024) e12722, https://doi.org/10.1002/eem2.12722. doi: 10.1002/eem2.12722
-
[32]
H. Liu, Y. Chen, S. Hy, K. An, S. Venkatachalam, D. Qian, M. Zhang, Y.S. Meng, Adv. Energy Mater. 6 (2016) 1502143, https://doi.org/10.1002/aenm.201502143. doi: 10.1002/aenm.201502143
-
[33]
H. Liu, W. Hua, S. Kunz, M. Bianchini, H. Li, J. Peng, J. Lin, O. Dolotko, T. Bergfeldt, K. Wang, et al., Nat. Commun. 15 (2024) 9981, https://doi.org/10.1038/s41467-024-54312-z. doi: 10.1038/s41467-024-54312-z
-
[34]
D. Ye, B. Wang, Y. Chen, G. Han, Z. Zhang, D. Hulicova-Jurcakova, J. Zou, L. Wang, J. Mater. Chem. A 2 (2014) 18767, https://doi.org/10.1039/c4ta03692a. doi: 10.1039/c4ta03692a
-
[35]
L. Zhang, D. Liu, J. Huang, J. Peng, H. Xie, B. Huang, Y. Li, Y. Sun, S. Xiao, R. Wang, J. Energy Storage 78 (2024) 110073, https://doi.org/10.1016/j.est.2023.110073. doi: 10.1016/j.est.2023.110073
-
[36]
Y. Zhou, H. Cui, B. Qiu, Y. Xia, C. Yin, L. Wan, Z. Shi, Z. Liu, ACS Mater. Lett. 3 (2021) 433, https://doi.org/10.1021/acsmaterialslett.1c00088. doi: 10.1021/acsmaterialslett.1c00088
-
[37]
W. Huang, C. Lin, M. Zhang, S. Li, Z. Chen, W. Zhao, C. Zhu, Q. Zhao, H. Chen, F. Pan, Adv. Energy Mater. 11 (2021) 2102646, https://doi.org/10.1002/aenm.202102646. doi: 10.1002/aenm.202102646
-
[38]
J. Hwang, S. Myeong, E. Lee, H. Jang, M. Yoon, H. Cha, J. Sung, M.G. Kim, D.H. Seo, J. Cho, Adv. Mater. 33 (2021) 2100352, https://doi.org/10.1002/adma.202100352. doi: 10.1002/adma.202100352
-
[39]
Q. Chen, Y. Pei, H. Chen, Y. Song, L. Zhen, C.-Y. Xu, P. Xiao, G. Henkelman, Nat. Commun. 11 (2020) 3411, https://doi.org/10.1038/s41467-020-17126-3. doi: 10.1038/s41467-020-17126-3
-
[40]
M. Saubanère, E. McCalla, J.-M. Tarascon, M.-L. Doublet, Energy Environ. Sci. 9 (2016) 984, https://doi.org/10.1039/c5ee03048j. doi: 10.1039/c5ee03048j
-
[41]
E. McCalla, A.M. Abakumov, M. Saubanère, D. Foix, E.J. Berg, G. Rousse, M.L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, Science 350 (2015) 1516, https://doi.org/10.1126/science.aac8260. doi: 10.1126/science.aac8260
-
[42]
Grimaud, W. Hong, Y. Shao-Horn, J.M. Tarascon, Nat. Mater. 15 (2016) 121, https://doi.org/10.1038/nmat4551. doi: 10.1038/nmat4551
-
[43]
Y. Xie, M. Saubanère, M.L. Doublet, Energy Environ. Sci. 10 (2017) 266, https://doi.org/10.1039/c6ee02328b. doi: 10.1039/c6ee02328b
-
[44]
J.-J. Marie, R.A. House, G.J. Rees, A.W. Robertson, M. Jenkins, J. Chen, S. Agrestini, M. Garcia-Fernandez, K.-J. Zhou, P.G. Bruce, Nat. Mater. 23 (2024) 818, https://doi.org/10.1038/s41563-024-01833-z. doi: 10.1038/s41563-024-01833-z
-
[45]
R.A. House, J.J. Marie, M.A. Perez-Osorio, G.J. Rees, E. Boivin, P.G. Bruce, Nat. Energy 6 (2021) 781, https://doi.org/10.1038/s41560-021-00780-2. doi: 10.1038/s41560-021-00780-2
-
[46]
Z. Chen, W. Zhang, J. Liu, M. Zhang, S. Li, F. Pan, Adv. Mater. 36 (2024) 2403307, https://doi.org/10.1002/adma.202403307. doi: 10.1002/adma.202403307
-
[47]
K. McColl, S.W. Coles, P. Zarabadi-Poor, B.J. Morgan, M.S. Islam, Nat. Mater. 23 (2024) 826, https://doi.org/10.1038/s41563-024-01873-5. doi: 10.1038/s41563-024-01873-5
-
[48]
Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T.A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, et al., Nat. Energy 3 (2018) 641, https://doi.org/10.1038/s41560-018-0184-2. doi: 10.1038/s41560-018-0184-2
-
[49]
W. Hua, S. Wang, M. Knapp, S.J. Leake, A. Senyshyn, C. Richter, M. Yavuz, J.R. Binder, C.P. Grey, H. Ehrenberg, et al., Nat. Commun. 10 (2019) 5365, https://doi.org/10.1038/s41467-019-13240-z. doi: 10.1038/s41467-019-13240-z
-
[50]
Y. Shin, W.H. Kan, M. Aykol, J.K. Papp, B.D. McCloskey, G. Chen, K.A. Persson, Nat. Commun. 9 (2018) 4597, https://doi.org/10.1038/s41467-018-07080-6. doi: 10.1038/s41467-018-07080-6
-
[51]
K. Ku, B. Kim, S.-K. Jung, Y. Gong, D. Eum, G. Yoon, K.-Y. Park, J. Hong, S.-P. Cho, D.-H. Kim, et al., Energy Environ. Sci. 13 (2020) 1269, https://doi.org/10.1039/c9ee04123k. doi: 10.1039/c9ee04123k
-
[52]
W. Liang, Y. Zhao, L. Shi, Z. Wang, S. Yuan, Angew. Chem. Int. Ed. 63 (2024) e12722, https://doi.org/10.1002/anie.202407477. doi: 10.1002/anie.202407477
-
[53]
J.X. Zuo, K. Zhang, J. Wang, X.F. Li, Acta Phys. Chim. Sin. 41 (2025) 100009, https://doi.org/10.3866/PKU.WHXB202404042. doi: 10.3866/PKU.WHXB202404042
-
[54]
X.X. Shi, S.X. Liao, B. Yuan, Y.J. Zhong, B.H. Zhong, H. Liu, X.D. Guo, Acta Phys. Chim. Sin. 31 (2015) 1527, https://doi.org/10.3866/PKU.WHXB201506151. doi: 10.3866/PKU.WHXB201506151
-
[55]
P. Barai, Z. Feng, H. Kondo, V. Srinivasan, J. Phys. Chem. B 123 (2019) 3291, https://doi.org/10.1021/acs.jpcb.8b12004. doi: 10.1021/acs.jpcb.8b12004
-
[56]
F. Cheng, Y. Xin, J. Chen, L. Lu, X. Zhang, H. Zhou, J. Mater. Chem. A 1 (2013) 5301, https://doi.org/10.1039/c3ta00153a. doi: 10.1039/c3ta00153a
-
[57]
P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu, Y. Liu, S.-J. Ahn, E. Kaeli, X. Xu, K.H. Stone, et al., Nat. Energy 6 (2021) 642, https://doi.org/10.1038/s41560-021-00832-7. doi: 10.1038/s41560-021-00832-7
-
[58]
Y. Zhang, C. Yin, B. Qiu, G. Chen, Y. Shang, Z. Liu, Energy Storage Mater. 53 (2022) 763, https://doi.org/10.1016/j.ensm.2022.10.008. doi: 10.1016/j.ensm.2022.10.008
-
[59]
L. Chen, Y. Su, S. Chen, N. Li, L. Bao, W. Li, Z. Wang, M. Wang, F. Wu, Adv. Mater. 26 (2014) 6756, https://doi.org/10.1002/adma.201402541. doi: 10.1002/adma.201402541
-
[60]
D. Wang, Y. Wu, C. Wu, Z. Ye, L. Yang, Y. Li, R. Dong, Z. Wu, Y. Sun, Y. Song, et al., Interfaces 14 (2022) 2711, https://doi.org/10.1021/acsami.1c18651. doi: 10.1021/acsami.1c18651
-
[61]
H. Choi, A.R. Schuer, H. Moon, M. Kuenzel, S. Passerini, Electrochim. Acta 430 (2022) 141047, https://doi.org/10.1016/j.electacta.2022.141047. doi: 10.1016/j.electacta.2022.141047
-
[62]
S. Xu, Z. Chen, W. Zhao, W. Ren, C. Hou, J. Liu, W. Wang, C. Yin, X. Tan, X. Lou, et al., Energy Environ. Sci. 17 (2024) 4327, https://doi.org/10.1039/d4ee90043j. doi: 10.1039/d4ee90043j
-
[63]
Gutierrez, J.T. Kirner, M.T. Saray, M. Avdeev, L.X. Geng, R.S. Yassar, W.Q. Lu, J. Croy, J. Electrochem. Soc. 169 (2022) 020574, https://doi.org/10.1149/1945-7111/ac5545. doi: 10.1149/1945-7111/ac5545
-
[64]
N.H. Vu, P. Arunkumar, J.C. Im, D.T. Ngo, H.T.T. Le, C.-J. Park, W.B. Im, J. Mater. Chem. A 5 (2017) 15730, https://doi.org/10.1039/c7ta04002d. doi: 10.1039/c7ta04002d
-
[65]
J. Sun, X. Cao, W. Yang, E. Yoo, H. Zhou, J. Mater. Chem. A 11 (2023) 13956, https://doi.org/10.1039/d3ta01624b. doi: 10.1039/d3ta01624b
-
[66]
L. Nie, C. Liang, S. Chen, Y. He, W. Liu, H. Zhao, T. Gao, Z. Sun, Q. Hu, Y. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 13281, https://doi.org/10.1021/acsami.1c00723. doi: 10.1021/acsami.1c00723
-
[67]
Z. Cai, S. Wang, H. Zhu, X. Tang, Y. Ma, D.Y.W. Yu, S. Zhang, G. Song, W. Yang, Y. Xu, et al., Colloid Interface Sci. 630 (2023) 281, https://doi.org/10.1016/j.jcis.2022.10.105. doi: 10.1016/j.jcis.2022.10.105
-
[68]
K. Gu, Z. Shi, X. Li, B. Qiu, Z. Liu, J. Mater. Chem. A 12 (2024) 24727, https://doi.org/10.1039/d4ta03917c. doi: 10.1039/d4ta03917c
-
[69]
G. Choi, U. Chang, J. Lee, K. Park, H. Kwon, H. Lee, Y.-I. Kim, J.H. Seo, Y.-C. Park, I. Park, et al., Energy Environ. Sci. 17 (2024) 4634, https://doi.org/10.1039/d4ee00487f. doi: 10.1039/d4ee00487f
-
[70]
T. Li, Z. Shi, L. Li, Y. Zhang, Y. Li, J. Zhao, Q. Gu, W. Wen, B. Qiu, Z. Liu, Chem. Eng. J. 474 (2023) 145728, https://doi.org/10.1016/j.cej.2023.145728. doi: 10.1016/j.cej.2023.145728
-
[71]
Z. Wei, Z. Shi, X. Wen, X. Li, B. Qiu, Q. Gu, J. Sun, Y. Han, H. Luo, H. Guo, et al., Mater. Today Energy 27 (2022) 101039, https://doi.org/10.1016/j.mtener.2022.101039. doi: 10.1016/j.mtener.2022.101039
-
[72]
L. Wang, S. Zhao, B. Wang, H. Yu, J. Energy Chem. 81 (2023) 110, https://doi.org/10.1016/j.jechem.2023.02.034. doi: 10.1016/j.jechem.2023.02.034
-
[73]
M. Tabuchi, M. Kitta, K. Yazawa, K. Kubota, J. Electrochem. Soc. 168 (2021) 110525, https://doi.org/10.1149/1945-7111/ac3526. doi: 10.1149/1945-7111/ac3526
-
[74]
J. Li, W. Li, C. Zhang, C. Han, X. Chen, H. Zhao, H. Xu, G. Jia, Z. Li, J. Li, et al., ACS Nano 17 (2023) 16827, https://doi.org/10.1021/acsnano.3c03666. doi: 10.1021/acsnano.3c03666
-
[75]
J. Meng, H. Xu, Q. Ma, Z. Li, L. Xu, Z. Chen, B. Cheng, S. Zhong, Electrochim. Acta 309 (2019) 326, https://doi.org/10.1016/j.electacta.2019.04.040. doi: 10.1016/j.electacta.2019.04.040
-
[76]
L. Zeng, H. Liang, Y. Wang, X. Ying, B. Qiu, J. Pan, Y. Zhang, W. Wen, X. Wang, Q. Gu, et al., Energy Environ. Sci. 18 (2025) 284, https://doi.org/10.1039/d4ee02511c. doi: 10.1039/d4ee02511c
-
[77]
F. Wu, G.T. Kim, M. Kuenzel, H. Zhang, J. Asenbauer, D. Geiger, U. Kaiser, S. Passerini, Adv. Energy Mater. 9 (2019) 1902445, https://doi.org/10.1002/aenm.201902445. doi: 10.1002/aenm.201902445
-
[78]
X.Z. Ren, T. Liu, L.N. Sun, P.X. Zhang, Acta Phys. Chim. Sin. 30 (2014) 1641, https://doi.org/10.3866/PKU.WHXB201406172. doi: 10.3866/PKU.WHXB201406172
-
[79]
B. Zhang, Y. Zhang, X. Wang, H. Liu, Y. Yan, S. Zhou, Y. Tang, G. Zeng, X. Wu, H.- G. Liao, et al., J. Am. Chem. Soc. 145 (2023) 8700, https://doi.org/10.1021/jacs.3c01999. doi: 10.1021/jacs.3c01999
-
[80]
C.-C. Wang, A. Manthiram, J. Mater. Chem. A 1 (2013) 10209, https://doi.org/10.1039/c3ta11703k. doi: 10.1039/c3ta11703k
-
[81]
T. Sudayama, K. Uehara, T. Mukai, D. Asakura, X.M. Shi, A. Tsuchimoto, B.M. de Boisse, T. Shimada, E. Watanabe, Y. Harada, et al., Energy Environ. Sci. 13 (2020) 1492, https://doi.org/10.1039/c9ee04197d. doi: 10.1039/c9ee04197d
-
[82]
X. Sun, C. Qin, B. Zhao, S. Jia, Z. Wang, T. Yang, X. Liu, L. Pan, L. Zheng, D. Luo, et al., Energy Storage Mater 70 (2024) 103559, https://doi.org/10.1016/j.ensm.2024.103559. doi: 10.1016/j.ensm.2024.103559
-
[83]
D. Liu, X. Fan, Z. Li, T. Liu, M. Sun, C. Qian, M. Ling, Y. Liu, C. Liang, Nano Energy 58 (2019) 786, https://doi.org/10.1016/j.nanoen.2019.01.080. doi: 10.1016/j.nanoen.2019.01.080
-
[84]
H. Liu, B. He, W. Xiang, Y.-C. Li, C. Bai, Y.-P. Liu, W. Zhou, X. Chen, Y. Liu, S. Gao, et al., Nanotechnology 31 (2020) 455704, https://doi.org/10.1088/1361-6528/ab9579. doi: 10.1088/1361-6528/ab9579
-
[85]
U. Maitra, R.A. House, J.W. Somerville, N. Tapia-Ruiz, J.G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M.A. Perez-Osorio, et al., Nat. Chem. 10 (2018) 288, https://doi.org/10.1038/nchem.2923. doi: 10.1038/nchem.2923
-
[86]
X. Bai, M. Sathiya, B. Mendoza-Sanchez, A. Iadecola, J. Vergnet, R. Dedryvère, M. Saubanèere, A.M. Abakumov, P. Rozier, J.M. Tarascon, Adv. Energy Mater. 8 (2018) 1802379, https://doi.org/10.1002/aenm.201802379. doi: 10.1002/aenm.201802379
-
[87]
Y. Liu, D. Liu, H.-H. Wu, X. Fan, A. Dou, Q. Zhang, M. Su, ACS Sustain. Chem. Eng. 6 (2018) 13045, https://doi.org/10.1021/acssuschemeng.8b02552. doi: 10.1021/acssuschemeng.8b02552
-
[88]
Y. Cheng, Z. Wu, X. Dai, J. Hu, Z. Tai, J. Sun, Y. Liu, Q. Tan, Y. Liu, J. Colloid Interface Sci. 605 (2022) 718, https://doi.org/10.1016/j.jcis.2021.07.141. doi: 10.1016/j.jcis.2021.07.141
-
[89]
Y. Liu, X. Fan, Z. Zhang, H.-H. Wu, D. Liu, A. Dou, M. Su, Q. Zhang, D. Chu, ACS Sustain. Chem. Eng. 7 (2018) 2225, https://doi.org/10.1021/acssuschemeng.8b04905. doi: 10.1021/acssuschemeng.8b04905
-
[90]
G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, J. Electrochem. Soc. 159 (2012) A410, https://doi.org/10.1149/2.059204jes. doi: 10.1149/2.059204jes
-
[91]
S.D. Zhang, Y. Liu, M.Y. Qi, A.M. Cao, Acta Phys. Chim. Sin. 37 (2021) 2011007, https://doi.org/10.3866/PKU.WHXB202011007. doi: 10.3866/PKU.WHXB202011007
-
[92]
M. Yang, B. Hu, F. Geng, C. Li, X. Lou, B. Hu, Electrochim. Acta 291 (2018) 278, https://doi.org/10.1016/j.electacta.2018.09.134. doi: 10.1016/j.electacta.2018.09.134
-
[93]
Y.-S. Jiang, G. Sun, F.-D. Yu, L.-F. Que, L. Deng, X.-H. Meng, Z.-B. Wang, Ionics 26 (2019) 151, https://doi.org/10.1007/s11581-019-03202-2. doi: 10.1007/s11581-019-03202-2
-
[94]
Z. Sun, L. Xu, C. Dong, H. Zhang, M. Zhang, Y. Ma, Y. Liu, Z. Li, Y. Zhou, Y. Han, et al., Nano Energy 63 (2019) 103887, https://doi.org/10.1016/j.nanoen.2019.103887. doi: 10.1016/j.nanoen.2019.103887
-
[95]
R.A. House, J.-J. Marie, J. Park, G.J. Rees, S. Agrestini, A. Nag, M. GarciaFernandez, K.-J. Zhou, P.G. Bruce, Nat. Commun. 12 (2021) 2975, https://doi.org/10.1038/s41467-021-23154-4. doi: 10.1038/s41467-021-23154-4
-
[96]
K.N. Zhao, X. Li, D. Su, Acta Phys. Chim. Sin. 37 (2021) 2009077, https://doi.org/10.3866/PKU.WHXB202009077. doi: 10.3866/PKU.WHXB202009077
-
[97]
S. Sun, C.Z. Zhao, H. Yuan, Z.H. Fu, X. Chen, Y. Lu, Y.F. Li, J.K. Hu, J.C. Dong, J.Q. Huang, et al., Sci. Adv. 8 (2022) eadd5189, https://doi.org/10.1126/sciadv.add5189. doi: 10.1126/sciadv.add5189
-
[98]
Z. Zhu, R. Gao, I. Waluyo, Y. Dong, A. Hunt, J. Lee, J. Li, Adv. Energy Mater. 10 (2020) 2001120, https://doi.org/10.1002/aenm.202001120. doi: 10.1002/aenm.202001120
-
[99]
L. He, J.M. Xu, Y.J. Wang, C.J. Zhang, Acta Phys. Chim. Sin. 33 (2017) 1605, https://doi.org/10.3866/PKU.WHXB201704145. doi: 10.3866/PKU.WHXB201704145
-
[100]
S. Chong, Y. Chen, W. Yan, S. Guo, Q. Tan, Y. Wu, T. Jiang, Y. Liu, J. Power Sources 332 (2016) 230, https://doi.org/10.1016/j.jpowsour.2016.09.028. doi: 10.1016/j.jpowsour.2016.09.028
-
[101]
H. Liu, D. Qian, M.G. Verde, M. Zhang, L. Baggetto, K. An, Y. Chen, K.J. Carroll, D. Lau, M. Chi, et al., ACS Appl. Mater. Interfaces 7 (2015) 19189, https://doi.org/10.1021/acsami.5b04932. doi: 10.1021/acsami.5b04932
-
[102]
Q.R. Xue, J.L. Li, G.F. Xu, P.F. Hou, G. Yan, Y. Dai, X.D. Wang, F. Gao, Acta Phys. Chim. Sin. 30 (2014) 1667, https://doi.org/10.3866/PKU.WHXB201406251. doi: 10.3866/PKU.WHXB201406251
-
[103]
Y. Liu, X. Fan, X. Huang, D. Liu, A. Dou, M. Su, D. Chu, J. Power Sources 403 (2018) 27, https://doi.org/10.1016/j.jpowsour.2018.09.082. doi: 10.1016/j.jpowsour.2018.09.082
-
[104]
Y. Liu, Q. Wang, X. Wang, T. Wang, Y. Gao, M. Su, A. Dou, Ionics 21 (2015) 2725, https://doi.org/10.1007/s11581-015-1484-1. doi: 10.1007/s11581-015-1484-1
-
[105]
Y. Li, Z. Shi, B. Qiu, J. Zhao, X. Li, Y. Zhang, T. Li, Q. Gu, J. Gao, Z. Liu, Adv. Funct. Mater. 33 (2023) 2302236, https://doi.org/10.1002/adfm.202302236. doi: 10.1002/adfm.202302236
-
[106]
C.-C. Wang, J.-W. Lin, Y.-H. Yu, K.-H. Lai, K.-F. Chiu, C.-C. Kei, ACS Sustain. Chem. Eng. 6 (2018) 16941, https://doi.org/10.1021/acssuschemeng.8b04285. doi: 10.1021/acssuschemeng.8b04285
-
[107]
K. Zhang, J. Qi, J. Song, Y. Zuo, Y. Yang, T. Yang, T. Chen, X. Liu, L. Chen, D. Xia, Adv. Mater. 34 (2022), https://doi.org/10.1002/adma.202109564. doi: 10.1002/adma.202109564
-
[108]
Z. Xu, X. Guo, W. Song, J. Wang, T. Qin, Y. Yuan, J. Lu, Adv. Mater. 36 (2023) 2303612, https://doi.org/10.1002/adma.202303612. doi: 10.1002/adma.202303612
-
[109]
L. Zeng, H. Liang, B. Qiu, Z. Shi, S. Cheng, K. Shi, Q. Liu, Z. Liu, Adv. Funct. Mater. 33 (2023) 2213260, https://doi.org/10.1002/adfm.202213260. doi: 10.1002/adfm.202213260
-
[110]
D. Mohanty, J. Li, D.P. Abraham, A. Huq, E.A. Payzant, D.L. Wood, C. Daniel, Chem. Mater. 26 (2014) 6272, https://doi.org/10.1021/cm5031415. doi: 10.1021/cm5031415
-
[111]
H. Dong, D. Jiang, S. Xing, L. Zhao, L. Hu, J. Mao, H. Zhang, Small 20 (2023) 2307156, https://doi.org/10.1002/smll.202307156. doi: 10.1002/smll.202307156
-
[112]
Y. Zhang, X. Shi, S. Zheng, Y. Ouyang, M. Li, C. Meng, Y. Yu, Z.-S. Wu, Energy Environ. Sci. 16 (2023) 5043, https://doi.org/10.1039/d3ee01318a. doi: 10.1039/d3ee01318a
-
[113]
X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, J.N. Zhang, X.Q. Yu, Y.G. Guo, Adv. Mater. 30 (2018) 1801751, https://doi.org/10.1002/adma.201801751. doi: 10.1002/adma.201801751
-
[114]
W. Guo, C. Zhang, Y. Zhang, L. Lin, W. He, Q. Xie, B. Sa, L. Wang, D.L. Peng, Adv. Mater. 33 (2021), https://doi.org/10.1002/adma.202103173. doi: 10.1002/adma.202103173
-
[115]
Y. Ouyang, Y. Zhang, G. Wang, X. Wei, A. Zhang, J. Sun, S. Wei, L. Song, F. Dai, Z.S. Wu, Adv. Funct. Mater. 34 (2024) 2401249, https://doi.org/10.1002/adfm.202401249. doi: 10.1002/adfm.202401249
-
[116]
F. Klein, C. Pfeifer, J. Bansmann, Z. Jusys, R.J. Behm, M. Wohlfahrt-Mehrens, M. Linden, P. Axmann, J. Electrochem. Soc. 169 (2022) 120533, https://doi.org/10.1149/1945-7111/acaa5c. doi: 10.1149/1945-7111/acaa5c
-
[117]
H. Xie, L. Tan, Z. Yao, J. Cui, X. Ding, Z. Zhang, D. Luo, Z. Lin, ACS Appl. Mater. Interfaces 15 (2023) 2881, https://doi.org/10.1021/acsami.2c17534. doi: 10.1021/acsami.2c17534
-
[118]
Z. Yang, H. Zhou, Z. Bao, J. Li, C. Yin, J. Mater. Sci. Mater. Electron. 30 (2019) 19493, https://doi.org/10.1007/s10854-019-02315-8. doi: 10.1007/s10854-019-02315-8
-
[119]
B. Wu, X. Yang, X. Jiang, Y. Zhang, H. Shu, P. Gao, L. Liu, X. Wang, Adv. Funct. Mater. 28 (2018) 1803392, https://doi.org/10.1002/adfm.201803392. doi: 10.1002/adfm.201803392
-
[120]
Z. Zhu, D. Yu, Y. Yang, C. Su, Y. Huang, Y. Dong, I. Waluyo, B. Wang, A. Hunt, X. Yao, et al., Nat. Energy 4 (2019) 1049, https://doi.org/10.1038/s41560-019-0508-x. doi: 10.1038/s41560-019-0508-x
-
[121]
Y. Pei, Q. Chen, M. Wang, B. Li, P. Wang, G. Henkelman, L. Zhen, G. Cao, C.-Y. Xu, Nano Energy 71 (2020) 104644, https://doi.org/10.1016/j.nanoen.2020.104644. doi: 10.1016/j.nanoen.2020.104644
-
[122]
B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, et al., Nat. Commun. 7 (2016) 12108, https://doi.org/10.1038/ncomms12108. doi: 10.1038/ncomms12108
-
[123]
K. Wang, J. Qiu, F. Hou, M. Yang, K. Nie, J. Wang, Y. Hou, W. Huang, W. Zhao, P. Zhang, et al., Adv. Energy Mater. 13 (2023) 2301216, https://doi.org/10.1002/aenm.202301216. doi: 10.1002/aenm.202301216
-
[124]
L. Bao, L. Wei, N. Fu, J. Dong, L. Chen, Y. Su, N. Li, Y. Lu, Y. Li, S. Chen, et al., Energy Chem. 66 (2022) 123, https://doi.org/10.1016/j.jechem.2021.07.023. doi: 10.1016/j.jechem.2021.07.023
-
[125]
Y. Fang, Y. Su, J. Dong, J. Zhao, H. Wang, Y. Lu, B. Zhang, H. Yan, F. Wu, L. Chen, J. Energy Chem. 92 (2024) 250, https://doi.org/10.1016/j.jechem.2023.12.050. doi: 10.1016/j.jechem.2023.12.050
-
[126]
X. Tan, R. Liu, C.X. Xie, Q. Shen, J. Power Sources 374 (2018) 134, https://doi.org/10.1016/j.jpowsour.2017.11.004. doi: 10.1016/j.jpowsour.2017.11.004
-
[127]
T. Nakamura, K. Ohta, Y. Kimura, K. Tsuruta, Y. Tamenori, R. Aso, H. Yoshida, K. Amezawa, ACS Appl. Energy Mater. 3 (2020) 9703, https://doi.org/10.1021/acsaem.0c01303. doi: 10.1021/acsaem.0c01303
-
[128]
Zhu, J. Wu, B. Wang, J. Zhou, Y. Zhang, Y. Guo, K. Wu, H. Wu, Q. Wang, Y. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 61248, https://doi.org/10.1021/acsami.1c19399. doi: 10.1021/acsami.1c19399
-
[129]
S. Kim, W. Cho, X. Zhang, Y. Oshima, J.W. Choi, Nat. Commun. 7 (2016) 13598, https://doi.org/10.1038/ncomms13598. doi: 10.1038/ncomms13598
-
[130]
Z.K. Hao, H.X. Sun, Y.X. Ni, G.J. Yang, Z. Yang, Z.M. Hao, R.H. Wang, P.K. Yang, Y. Lu, Q. Zhao, et al., Adv. Mater. 36 (2023) 2307617, https://doi.org/10.1002/adma.202307617. doi: 10.1002/adma.202307617
-
[131]
Y. Li, C. Wu, Y. Bai, L. Liu, H. Wang, F. Wu, N. Zhang, Y. Zou, ACS Appl. Mater. Interfaces 8 (2016) 18832, https://doi.org/10.1021/acsami.6b04687. doi: 10.1021/acsami.6b04687
-
[132]
L. Wang, Y. Chen, X. Wen, J. Li, P. Meng, S. Tao, Sustain. Energy Technol. Assessments 52 (2022) 102006, https://doi.org/10.1016/j.seta.2022.102006. doi: 10.1016/j.seta.2022.102006
-
[133]
L. Li, L. Wang, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, ACS Appl. Mater. Interfaces 9 (2017) 1516, https://doi.org/10.1021/acsami.6b13229. doi: 10.1021/acsami.6b13229
-
[134]
C. Huang, Z.-Q. Fang, Z.-J. Wang, J.-W. Zhao, S.-X. Zhao, L.-J. Ci, Nanoscale 13 (2021) 4921, https://doi.org/10.1039/d0nr08980j. doi: 10.1039/d0nr08980j
-
[135]
Y. Liu, J. Lv, S. Liu, L. Chen, X. Chen, Powder Technol. 239 (2013) 461, https://doi.org/10.1016/j.powtec.2013.02.039. doi: 10.1016/j.powtec.2013.02.039
-
[136]
J. Xu, L. Kaufman, F.C. Robles Hernandez, A. Pramanik, G. Babu, J. Nanda, B.D. McCloskey, P.M. Ajayan, ACS Appl. Energy Mater. 6 (2023) 5026, https://doi.org/10.1021/acsaem.3c00630. doi: 10.1021/acsaem.3c00630
-
[137]
Z. Qi, J. Tang, J. Huang, D. Zemlyanov, V.G. Pol, H. Wang, ACS Appl. Energy Mater. 2 (2019) 3461, https://doi.org/10.1021/acsaem.9b00259. doi: 10.1021/acsaem.9b00259
-
[138]
X. Ju, H. Huang, W. He, H. Zheng, P. Deng, S. Li, B. Qu, T. Wang, ACS Sustain. Chem. Eng. 6 (2018) 6312, https://doi.org/10.1021/acssuschemeng.8b00126. doi: 10.1021/acssuschemeng.8b00126
-
[139]
Y. Sun, H. Cong, L. Zan, Y. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 38545, https://doi.org/10.1021/acsami.7b12080. doi: 10.1021/acsami.7b12080
-
[140]
F. Wang, S. Xiao, M. Li, X. Wang, Y. Zhu, Y. Wu, A. Shirakawa, J.J. Peng, Power Sources 287 (2015) 416, https://doi.org/10.1016/j.jpowsour.2015.04.034. doi: 10.1016/j.jpowsour.2015.04.034
-
[141]
M. Abe, F. Matsumoto, M. Saito, H. Yamamura, G. Kobayashi, A. Ito, T. Sanada, M. Hatano, Y. Ohsawa, Y. Sato, Chem. Lett. 41 (2012) 418, https://doi.org/10.1246/cl.2012.418. doi: 10.1246/cl.2012.418
-
[142]
M. Wang, C. Ke, H. Zhang, C. Hou, J. Chen, S. Liu, J. Wang, Nano Lett. 24 (2024) 12343, https://doi.org/10.1021/acs.nanolett.4c01532. doi: 10.1021/acs.nanolett.4c01532
-
[143]
E. Yin, A. Grimaud, G. Rousse, A. Abakumov, A. Senyshyn, L. Zhang, S. Trabesinger, A. Iadecola, D. Foix, D. Giaume, et al., Nat. Commun. 11 (2020) 1252, https://doi.org/10.1038/s41467-020-14927-4. doi: 10.1038/s41467-020-14927-4
-
[144]
J.-C. Li, J. Tang, J. Tian, C. Cheng, Y. Liao, B. Hu, T. Yu, H. Li, Z. Liu, Y. Rao, et al., J. Am. Chem. Soc. 146 (2024) 7274, https://doi.org/10.1021/jacs.3c11569. doi: 10.1021/jacs.3c11569
-
[145]
S. Myeong, W. Cho, W. Jin, J. Hwang, M. Yoon, Y. Yoo, G. Nam, H. Jang, J.- G. Han, N.-S. Choi, et al., Nat. Commun. 9 (2018) 3285, https://doi.org/10.1038/s41467-018-05802-4. doi: 10.1038/s41467-018-05802-4
-
[146]
J. Zhang, F. Cheng, S. Chou, J. Wang, L. Gu, H. Wang, H. Yoshikawa, Y. Lu, J. Chen, Adv. Mater. 31 (2019) 1901808, https://doi.org/10.1002/adma.201901808. doi: 10.1002/adma.201901808
-
[147]
J. Song, B. Li, Y. Chen, Y. Zuo, F. Ning, H. Shang, G. Feng, N. Liu, C. Shen, X. Ai, et al., Adv. Mater. 32 (2020) 2000190, https://doi.org/10.1002/adma.202000190. doi: 10.1002/adma.202000190
-
[148]
Q. Li, D. Ning, D. Wong, K. An, Y. Tang, D. Zhou, G. Schuck, Z. Chen, N. Zhang, X. Liu, Nat. Commun. 13 (2022) 1123, https://doi.org/10.1038/s41467-022-8793-9. doi: 10.1038/s41467-022-8793-9
-
[149]
T. Cui, J. Xu, X. Wang, L. Liu, Y. Xiang, H. Zhu, X. Li, Y. Fu, Nat. Commun. 15 (2024) 4742, https://doi.org/10.1038/s41467-024-48890-1. doi: 10.1038/s41467-024-48890-1
-
[150]
C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang, L. Ma, C. Yang, E. Hu, X.-Q. Yang, C. Wang, J. Am. Chem. Soc. 142 (2020) 8918, https://doi.org/10.1021/jacs.0c02302. doi: 10.1021/jacs.0c02302
-
[151]
X. Zhong, M. Oubla, X. Wang, Y. Huang, H. Zeng, S. Wang, K. Liu, J. Zhou, L. He, H. Zhong, et al., Nat. Commun. 12 (2021) 3136, https://doi.org/10.1038/s41467-021-23430-3. doi: 10.1038/s41467-021-23430-3
-
[152]
W. Huang, C. Lin, J. Qiu, S. Li, Z. Chen, H. Chen, W. Zhao, G. Ren, X. Li, M. Zhang, et al., Chem 8 (2022) 2163, https://doi.org/10.1016/j.chempr.2022.04.012. doi: 10.1016/j.chempr.2022.04.012
-
[1]
-

计量
- PDF下载量: 1
- 文章访问数: 28
- HTML全文浏览量: 4