Citation: Jiajie Cai,  Chang Cheng,  Bowen Liu,  Jianjun Zhang,  Chuanjia Jiang,  Bei Cheng. CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100084. doi: 10.1016/j.actphy.2025.100084 shu

CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学

  • Received Date: 20 February 2025
    Revised Date: 10 March 2025
    Accepted Date: 24 March 2025

    Fund Project: This work was supported by the National Key Research and Development Program of China (2022YFB3803600), the National Natural Science Foundation of China (22238009, 22361142704, 22261142666, 22278324, 52073223), the Natural Science Foundation of Hubei Province of China (2022CFA001), and the Fundamental Research Funds for the Central Universities (63241632).

  • 光催化分解水产氢具有广阔的应用前景。然而,单一光催化剂由于光生电子与空穴易复合,导致光催化产氢效率较低,严重制约了该技术的实际应用。构建异质结是克服这些缺点的有效策略,最近S型异质结脱颖而出,显示出了高效的促进电子和空穴分离的能力,同时最大限度地提高光催化剂的氧化还原能力。其中,基于聚合物的S型光催化剂正在兴起,但无机-有机S型异质结中的载流子动力学仍有待阐明。在本工作中,我们制备了由共轭聚合物双氧硫芴苯并二噻吩二酮(dibenzothiophene-S,S-dioxide-alt-benzodithiophene, DBTSO-BDTO)和硫化镉(CdS)组成的S型异质结,并研究了其光催化制氢的性能和界面电荷传输机制。利用原位辐照X射线光电子能谱验证了S型电子转移机理,并利用飞秒瞬态吸收光谱深入分析了S型异质结中载流子的动力学,证实有大量光生电子发生了界面电荷转移。由于S型异质结对载流子效率的提高和氧化还原能力的增强,复合材料的性能超过了DBTSO-BDTO和CdS,并且最优化复合材料的析氢速率达到3313 μmol·h-1·g-1,约为纯CdS的3倍。本工作为S型异质结的电子转移机制提供了新的视角,并可指导用于太阳能燃料生产的聚合物基光催化剂的开发。
  • 加载中
    1. [1]

      Z.Y. Yu, Y. Duan, X.Y. Feng, X.X. Yu, M.R. Gao, S.H. Yu, Adv. Mater. 33 (2021) 2007100, https://doi.org/10.1002/adma.202007100.

    2. [2]

      Y.X. Wu, M.R. Qu, S.J. Jiang, J.J. Zhang, S.Q. Song, Sci. China Mater. 67 (2024) 524, https://doi.org/10.1007/s40843-023-2760-1.

    3. [3]

      B.B. Zhao, W. Zhong, F. Chen, P. Wang, C.B. Bie, H.G. Yu, Chin. J. Catal. 52 (2023) 127, https://doi.org/10.1016/s1872-2067(23)64491-2.

    4. [4]

      H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y.Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature 598 (2021) 304, https://doi.org/10.1038/s41586-021-03907-3.

    5. [5]

      P. Zhou, I.A. Navid, Y.J. Ma, Y.X. Xiao, P. Wang, Z.W. Ye, B.W. Zhou, K. Sun, Z.T. Mi, Nature 613 (2023) 66, https://doi.org/10.1038/s41586-022-05399-1.

    6. [6]

      G.T. Sun, Z.G. Tai, J.J. Zhang, B. Cheng, H.G. Yu, J.G. Yu, Appl. Catal. B Environ. 358 (2024) 124459, https://doi.org/10.1016/j.apcatb.2024.124459.

    7. [7]

      Z.H. Yu, C. Guan, X.Y. Yue, Q.J. Xiang, Chin. J. Catal. 50 (2023) 361, https://doi.org/10.1016/s1872-2067(23)64448-1.

    8. [8]

      Y.W. Zhu, L.L. Wang, Y.T. Liu, L.H. Shao, X.N. Xia, Appl. Catal. B Environ. 241 (2019) 483, https://doi.org/10.1016/j.apcatb.2018.09.062.

    9. [9]

      S. Cao, B. Zhong, C.B. Bie, B. Cheng, F.Y. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.

    10. [10]

      H.F. Liu, X. Huang, J.Z. Chen, Chin. J. Catal. 51 (2023) 49, https://doi.org/10.1016/s1872-2067(23)64483-3.

    11. [11]

      Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, J. Am. Chem. Soc. 133 (2011) 10878, https://doi.org/10.1021/ja2025454.

    12. [12]

      N.Z. Bao, L.M. Shen, T. Takata, K. Domen, Chem. Mater. 20 (2008) 110, https://doi.org/10.1021/cm7029344.

    13. [13]

      X. Zong, H.J. Yan, G.P. Wu, G.J. Ma, F.Y. Wen, W. Lu, L. Can, J. Am. Chem. Soc. 130 (2008) 7176, doi: 10.1021/ja8007825.

    14. [14]

      Y.J. Ren, Y.F. Li, G.X. Pan, N. Wang, Y. Xing, Z.Y. Zhang, J. Mater. Sci. Technol. 171 (2024) 162, https://doi.org/10.1016/j.jmst.2023.06.052.

    15. [15]

      R.C. Shen, D.D. Ren, Y.N. Ding, Y.T. Guan, Y.H. Ng, P. Zhang, X. Li, Sci. China Mater. 63 (2020) 2153, https://doi.org/10.1007/s40843-020-1456-x.

    16. [16]

      K. Sharma, V. Hasija, M. Malhotra, P.K. Verma, A.A. Parwaz Khan, S. Thakur, Q. Van Le, H.H. Phan Quang, V.-H. Nguyen, P. Singh, P. Raizada, Int. J. Hydrogen Energy 52 (2024) 804, https://doi.org/10.1016/j.ijhydene.2023.09.033.

    17. [17]

      M.Y. Qi, Q. Lin, Z.R. Tang, Y.J. Xu, Appl. Catal. B Environ. 307 (2022) 121158, https://doi.org/10.1016/j.apcatb.2022.121158.

    18. [18]

      Q. Liang, G.Y. Jiang, Z. Zhao, Z.Y. Li, M. MacLachlan, J. Catal. Sci. Technol. 5 (2015) 3368, https://doi.org/10.1039/c5cy00470e.

    19. [19]

      G.T. Sun, J.J. Zhang, B. Cheng, H.G. Yu, J.G. Yu, J.S. Xu, Chem. Eng. J. 476 (2023) 146818, https://doi.org/10.1016/j.cej.2023.146818.

    20. [20]

      L.J. Sun, X.H. Yu, L.Y. Tang, W.K. Wang, Q.Q. Liu, Chin. J. Catal. 52 (2023) 164, https://doi.org/10.1016/s1872-2067(23)64507-3.

    21. [21]

      X.L. Xiang, L.X. Wang, J.J. Zhang, B. Cheng, J.G. Yu, W. Macyk, Adv. Photonics Res. 3 (2022) 2200065, https://doi.org/10.1002/adpr.202200065.

    22. [22]

      X.L. Xiang, L.Y. Zhang, C. Luo, J.J. Zhang, B. Cheng, G.J. Liang, Z.Y. Zhang, J.G. Yu, Appl. Catal. B Environ. 340 (2024) 123196, https://doi.org/10.1016/ j.apcatb.2023.123196.

    23. [23]

      C. Cheng, B.W. He, J.J. Fan, B. Cheng, S.W. Cao, J.G. Yu, Adv. Mater. 33 (2021) 2100317, https://doi.org/10.1002/adma.202100317.

    24. [24]

      X.Y. Deng, J.J. Zhang, K.Z. Qi, G.J. Liang, F.Y. Xu, J.G. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.

    25. [25]

      K. Meng, J.J. Zhang, B. Cheng, X.G. Ren, Z.S. Xia, F.Y. Xu, L.Y. Zhang, J.G. Yu, Adv. Mater. 36 (2024) e2406460, https://doi.org/10.1002/adma.202406460.

    26. [26]

      M.L. Gu, Y. Yang, B. Cheng, L.Y. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/s1872-2067(23)64610-8.

    27. [27]

      J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011.

    28. [28]

      Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 504 (2024), 125674, doi:10.1016/j.ccr.2024.215674.

    29. [29]

      Z. Yu, F. Li, Q. Xiang, J. Mater. Sci. Technol. 175 (2024) 244, https://doi.org/10.1016/j.jmst.2023.08.023.

    30. [30]

      S. Wageh, A.A. Al-Ghamdi, O.A. Al-Hartomy, M.F. Alotaibi, L.X. Wang, Chin. J. Catal. 43 (2022) 586, https://doi.org/10.1016/s1872-2067(21)63925-6.

    31. [31]

      X.H. Wu, G.Q. Chen, J. Wang, J.M. Li, G.H. Wang, Acta Phys. Chim. Sin. 39 (2023) 2212016, https://doi.org/10.3866/PKU.WHXB202212016.

    32. [32]

      Q.L. Xu, R.G. He, Y.J. Li, Acta Phys. Chim. Sin. 39 (2023) 2211009, https://doi.org/10.3866/PKU.WHXB202211009.

    33. [33]

      C. Cheng, J.J. Zhang, B.C. Zhu, G.J. Liang, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, https://doi.org/10.1002/anie.202218688.

    34. [34]

      J.T. Yan, J.J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.

    35. [35]

      Y. Wu, C. Cheng, K.Z. Qi, B. Cheng, J.J. Zhang, J.G. Yu, L.Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, doi: 10.3866/PKU.WHXB202406027.

    36. [36]

      C. Cheng, X.C. Wang, F. Wang, Appl. Surf. Sci. 495 (2019) 143537, https://doi.org/10.1016/j.apsusc.2019.143537.

    37. [37]

      X.Y. Xiong, Y.R. Jin, H.W. Wang, P. He, X. Xiang, P.C. Hu, K.F. Liu, Q.Q. Wei, B.Z. Wang, Mater. Chem. Phys. 281 (2022) 125824, https://doi.org/10.1016/ j.matchemphys.2022.125824.

    38. [38]

      Q. Li, J. Li, W.R. Wang, L.N. Liu, Z.W. Xu, G.H. Xie, J.J. Li, J.H. Yao, W.S. Li, Chin. J. Chem. 40 (2022) 2457, https://doi.org/10.1002/cjoc.202200355.

    39. [39]

      T. Senasu, K. Hemavibool, S. Nanan, RSC Adv. 8 (2018) 22592, https://doi.org/10.1039/c8ra02061b.

    40. [40]

      Y. Yang, J.S. Wu, B. Cheng, L.Y. Zhang, A.A. Al-Ghamdi, S. Wageh, Y.J. Li, Chin. J. Struct. Chem. 41 (2022) 2206006, https://doi.org/10.14102/j.cnki.0254-5861.2022-0124.

    41. [41]

      B.W. Liu, J.J. Cai, J.J. Zhang, H.Y. Tan, B. Cheng, J.S. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/s1872-2067(23)64466-3.

    42. [42]

      M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J.Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87 (2015) 1051, https://doi.org/10.1515/pac-2014-1117.

    43. [43]

      L.W. Wang, R.R. Zheng, Q.F. Niu, H.L. Yuan, M. Meng, Mater. Lett. 362 (2024) 136179, https://doi.org/10.1016/j.matlet.2024.136179.

    44. [44]

      L. Wang, H.H. Zhou, H.Z. Zhang, Y.L. Song, H. Zhang, L.K. Luo, Y.F. Yang, S.Q. Bai, Y. Wang, S.X. Liu, Nanoscale 12 (2020) 13791, https://doi.org/10.1039/d0nr03196h.

    45. [45]

      B.C. Zhu, J. Sun, Y.Y. Zhao, L.Y. Zhang, J.G. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600.

    46. [46]

      G.T. Sun, Z.G. Tai, F. Li, Q. Ye, T. Wang, Z.Y. Fang, L.C. Jia, W. Liu, H.Q. Wang, Small 19 (2023) e2207758, https://doi.org/10.1002/smll.202207758.

    47. [47]

      B.W. He, P. Xiao, S.J. Wan, J.J. Zhang, T. Chen, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172, https://doi.org/10.1002/anie.202313172.

    48. [48]

      W.L. Yu, C.B. Bie, Acta Phys. Chim. Sin. 40 (2024) 2307022, https://doi.org/10.3866/PKU.WHXB202307022.

    49. [49]

      B.C. Zhu, J.J. Liu, J. Sun, F. Xie, H.Y. Tan, B. Cheng, J.J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054.

    50. [50]

      Z. Meng, J.J. Zhang, C.C. Jiang, C. Trapalis, L.Y. Zhang, J.G. Yu, Small (2023) e2308952, https://doi.org/10.1002/smll.202308952.

    51. [51]

      W.C. Wang, Y. Tao, J.C. Fan, Z.P. Yan, H. Shang, D.L. Phillips, M. Chen, G.S. Li, Adv. Funct. Mater. 32 (2022) 2201357, https://doi.org/10.1002/ adfm.202201357.

    52. [52]

      C.B. Bie, B.C. Zhu, L.X. Wang, H.G. Yu, C.H. Jiang, T. Chen, J.G. Yu, Angew. Chem. Int. Ed. 61 (2022) e202212045, https://doi.org/10.1002/anie.202212045.

    53. [53]

      L. Zhu, Z.F. Liang, H. Li, Q.N. Xu, D.C. Jiang, H.W. Du, C.H. Zhu, H.Q. Li, Z. Lu, Y.P. Yuan, Small 19 (2023) 2301017, https://doi.org/10.1002/smll.202301017.

    54. [54]

      J.J. Cai, B.W. Liu, S.M. Zhang, L.X. Wang, Z. Wu, J.J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.

    55. [55]

      K.F. Wu, H.M. Zhu, Z. Liu, W. Rodríguez, T.Q. Lian, J. Am. Chem. Soc. 134 (2012) 10337, https://doi.org/10.1021/ja303306u.

    56. [56]

      B.C. Qiu, L. Cai, N. Zhang, X.M. Tao, Y. Chai, Adv. Sci. 7 (2020) 1903568, https://doi.org/10.1002/advs.201903568.

    57. [57]

      J.J. Zhang, J.J. Liu, Z. Meng, S. Jana, L.X. Wang, B.C. Zhu, J. Mater. Sci. Technol. 159 (2023) 1, https://doi.org/10.1016/j.jmst.2023.02.044.

    58. [58]

      J.J. Zhang, G.Y. Yang, B.W. He, B. Cheng, Y.J. Li, G.J. Liang, L.X. Wang, Chin. J. Catal. 43 (2022) 2530, https://doi.org/10.1016/s1872-2067(22)64108-1.

    59. [59]

      C. Cheng, B.C. Zhu, B. Cheng, W. Macyk, L.X. Wang, J.G. Yu, ACS Catal. 13 (2022) 459, https://doi.org/10.1021/acscatal.2c05001.

    60. [60]

      J.Y. Qiu, K. Meng, Y. Zhang, B. Cheng, J.J. Zhang, L.X. Wang, J.G. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.

    61. [61]

      M.M. Luo, G.J. Jiang, M. Yu, Y.P. Yan, Z.J. Qin, Y. Li, Q. Zhang, J. Mater. Sci. Technol. 161 (2023) 220, https://doi.org/10.1016/j.jmst.2023.03.038.

    62. [62]

      J.H. Hua, Z.L. Wang, J.F. Zhang, K. Dai, C.F. Shao, K. Fan, J. Mater. Sci. Technol. 156 (2023) 64, https://doi.org/10.1016/j.jmst.2023.03.003.

    63. [63]

      T. Sun, C.X. Li, Y.P. Bao, J. Fan, E.Z. Liu, Acta Phys. Chim. Sin. 39 (2023) 2212009, https://doi.org/10.3866/PKU.WHXB202212009.

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    3. [3]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    19. [19]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return