Citation: Mingjie Lei,  Wenting Hu,  Kexin Lin,  Xiujuan Sun,  Haoshen Zhang,  Ye Qian,  Tongyue Kang,  Xiulin Wu,  Hailong Liao,  Yuan Pan,  Yuwei Zhang,  Diye Wei,  Ping Gao. Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100083. doi: 10.1016/j.actphy.2025.100083 shu

Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能

  • Received Date: 21 January 2025
    Revised Date: 8 March 2025
    Accepted Date: 23 March 2025

    Fund Project: The project was supported by the Scientific Research Fund of Hunan Provincial Education Department (23B0114), the Natural Science Foundation of Hunan Province (2024JJ5368), the National Natural Science Foundation of China (22122402), and the Natural Science Foundation of Guangdong Province (2021B1515020048).

  • 尿素氧化反应(UOR)是一种很有前途的可再生能源生产技术,为电解水制氢提供了有效的替代方案,因此开发高效稳定的UOR催化剂至关重要。本文通过NaBH4还原和硒化策略合成了富含Co、Mn和Mo的硒化镍催化剂(NiCoMnMo-Se),该催化剂具有球形纳米颗粒与纳米片共存结构。X射线光电子能谱(XPS)、紫外-可见分光光度法(UV-vis)和原位bode相图表明,Mn和Mo的协同效应调节了Ni/Co的电子结构,提高了硒化物的电导率并加速加速电荷转移动力学,从而促进Ni2+/Co2+快速转变为活性Ni3+/Co3+,并显著降低了NiCoMnMo-Se的起始电位。在UOR过程中,大部分Mo和Se被氧化成钼酸盐和硒酸盐溶解在电解质中,暴露出更多的Ni(Co)OOH活性位点,从而加快UOR反应。另外,Mn的引入稳固了活性位点,极大地增强催化剂的整体稳定性。正如预期的那样,NiCoMnMo-Se催化剂在UOR过程中表现出优异的电催化和稳定性性能,在仅1.38 V vs. RHE (相对于可逆氢电极)的电位下实现了50 mA·cm-2的电流密度,并在50 mA·cm-2电流密度下运行50 h后电压仅上升3.0%。当NiCoMnMo-Se和商业Pt/C组装成用于碱性尿素电解的双电极体系时,它只需要1.59 V vs. RHE便达到50 mA·cm-2
  • 加载中
    1. [1]

      P. Xie, Y. Wang, P. Yao, D. Zhang, H. Zhang, J. Cao, C. Liu, X. Mei, P. Song, X. Gong, et al., Electroanalysis 35 (2023) 8, https://doi.org/10.1002/elan.202300010.

    2. [2]

      G.-R. Xu, J. Bai, L. Yao, Q. Xue, J.-X. Jiang, J.-H. Zeng, Y. Chen, J.-M. Lee, ACS Catal. 7 (2016) 1, https://doi.org/10.1021/acscatal.6b03049.

    3. [3]

      M. Li, X. Wang, K. Liu, H. Sun, D. Sun, K. Huang, Y. Tang, W. Xing, H. Li, G. Fu, Adv. Mater. 35 (2023) 30, https://doi.org/10.1002/adma.202302462.

    4. [4]

      Y. Hu, B. Liu, L. Xu, Z. Dong, Y. Wu, J. Liu, C. Zhong, W. Hu, Acta Phys. Chim. Sin. 39 (2023) 2209004, https://doi.org/10.3866/PKU.WHXB202209004.

    5. [5]

      Y. Li, F.-M. Li, X.-Y. Meng, S.-N. Li, J.-H. Zeng, Y. Chen, ACS Catal. 8 (2018) 3, https://doi.org/10.1021/acscatal.7b03949.

    6. [6]

      Y. Huang, M. Li, F. Pan, Z. Zhu, H. Sun, Y. Tang, G. Fu, Carbon Energy 5 (2022) 3, https://doi.org/10.1002/cey2.279.

    7. [7]

      Y. Li, F.-M. Li, X.-Y. Meng, X.-R. Wu, S.-N. Li, Y. Chen, Nano Energy 54 (2018) 238, https://doi.org/10.1016/j.nanoen.2018.10.032.

    8. [8]

      X. Yan, Q.-T. Hu, G. Wang, W.-D. Zhang, J. Liu, T. Li, Z.-G. Gu, Int. J. Hydrogen Energy 45 (2020) 38, https://doi.org/10.1016/j.ijhydene.2020.05.052.

    9. [9]

      D. Wang, W. Yan, S.H. Vijapur, G.G. Botte, J. Power Sources 217 (2012) 498, https://doi.org/10.1016/j.jpowsour.2012.06.029.

    10. [10]

      M. Li, X. Wu, K. Liu, Y. Zhang, X. Jiang, D. Sun, Y. Tang, K. Huang, G. Fu, J. Energy Chem. 69 (2022) 506, https://doi.org/10.1016/j.jechem.2022.01.031.

    11. [11]

      J. Kang, C. Sheng, J. Wang, H. Xu, B. Zhao, S. Chen, Y. Qing, Y. Wu, Int. J. Hydrogen Energy 48 (2023) 21, https://doi.org/10.1016/j.ijhydene.2022.11.210.

    12. [12]

      X. Xu, T. Guo, J. Xia, B. Zhao, G. Su, H. Wang, M. Huang, A. Toghan, Chem. Eng. J. 425 (2021) 130514, https://doi.org/10.1016/j.cej.2021.130514.

    13. [13]

      R. Wei, D. Li, H. Yin, X. Wang, C. Li, Acta Phys. Chim. Sin. 39 (2023) 2207035, https://doi.org/10.3866/PKU.WHXB202207035.

    14. [14]

      P. Babar, A. Lokhande, V. Karade, I.J. Lee, D. Lee, S. Pawar, J.H. Kim, J. Colloid Interface Sci. 557 (2019) 10, https://doi.org/10.1016/j.jcis.2019.09.012.

    15. [15]

      H. Li, Y. Pu, W. Li, Z. Yan, R. Deng, F. Shi, C. Zhao, Y. Zhang, T. Duan, Small 20 (2024) 2403311, https://doi.org/10.1002/smll.202403311.

    16. [16]

      Y. Li, X. Chen, Y. Yu, K. Zhang, Y. Cheng, W. He, Q. Luo, S. Gao, Appl. Catal. B Environ. Energy 354 (2024) 124150, https://doi.org/10.1016/j.apcatb.2024.124150.

    17. [17]

      J. Ge, Z. Liu, M. Guan, J. Kuang, Y. Xiao, Y. Yang, C.H. Tsang, X. Lu, C. Yang, J. Colloid Interface Sci. 620 (2022) 442, https://doi.org/10.1016/j.jcis.2022.03.152.

    18. [18]

      M. Song, X. Tao, Y. Wu, Y. Qing, C. Tian, H. Xu, X. Lu, Chem. Eng. J. 421 (2021) 129751, https://doi.org/10.1016/j.cej.2021.129751.

    19. [19]

      K. Zhang, S. Wang, X. Li, H. Li, Y. Ni, Small 19 (2023) 28, https://doi.org/10.1002/smll.202300959.

    20. [20]

      Q. Liu, F. Zhao, X. Yang, J. Zhu, S. Yang, L. Chen, P. Zhao, Q. Wang, Q. Zhang, J. Mater. Sci. Technol. 203 (2024) 97, https://doi.org/10.1016/j.jmst.2024.01.096.

    21. [21]

      G. Qian, J. Chen, W. Jiang, T. Yu, K. Tan, S. Yin, Carbon Energy 5 (2023) 12, https://doi.org/10.1002/cey2.368.

    22. [22]

      M. Mathankumar, S.-L. Tu, P. Hasin, C.-K. Hsieh, J.-Y. Lin, Int. J. Hydrogen Energy 77 (2024) 373, https://doi.org/10.1016/j.ijhydene.2024.06.058.

    23. [23]

      S. Ni, H. Qu, Z. Xu, X. Zhu, H. Xing, L. Wang, J. Yu, H. Liu, C. Chen, L. Yang, Appl. Catal. B Environ. 299 (2021) 120638, https://doi.org/10.1016/j.apcatb.2021.120638.

    24. [24]

      L. Zhu, Y. Cheng, Y. Gong, Int. J. Hydrogen Energy 69 (2024) 549, https://doi.org/10.1016/j.ijhydene.2024.05.001.

    25. [25]

      S. Xu, D. Jiao, X. Ruan, Z. Jin, Y. Qiu, J. Fan, L. Zhang, W. Zheng, X. Cui, J. Colloid Interface Sci. 671 (2024) 46, https://doi.org/10.1016/j.jcis.2024.05.155.

    26. [26]

      H. Zhao, M. Liu, X. Du, X. Zhang, Int. J. Hydrogen Energy 58 (2024), https://doi.org/10.1016/j.ijhydene.2024.01.186.

    27. [27]

      Z. Jiang, L. Zheng, M. Liu, H. Xu, S. Chen, F. Xiong, Y. Liao, Y. Liao, Y. Qing, Y. Wu, Appl. Surf. Sci. 638 (2023), https://doi.org/10.1016/j.apsusc.2023.158058.

    28. [28]

      J. Kang, F. Yang, C. Sheng, H. Xu, J. Wang, Y. Qing, Y. Wu, X. Lu, Small 18 (2022) 24, https://doi.org/10.1002/smll.202200950.

    29. [29]

      X. Xu, P. Du, T. Guo, B. Zhao, H. Wang, M. Huang, ACS Sustain. Chem. Eng. 8 (2020) 19, https://doi.org/10.1021/acssuschemeng.0c01814.

    30. [30]

      T. Guo, X. Xu, X. Wang, J. Zhou, H. Wang, Z. Shi, M. Huang, Chem. Eng. J. 417 (2021) 128067, https://doi.org/10.1016/j.cej.2020.128067.

    31. [31]

      X. Li, P. Babar, K. Patil, S. Kale, E. Jo, X. Chen, Z. Hussain, J.H. Kim, Y.T. Yoo, Mater. Chem. Phys. 287 (2022) 126310, https://doi.org/10.1016/j.matchemphys.2022.126310.

    32. [32]

      S. Tao, G. Zhang, B. Qian, J. Yang, S. Chu, C. Sun, D. Wu, W. Chu, L. Song, Appl. Catal. B Environ. 330 (2023) 122600, https://doi.org/10.1016/j.apcatb.2023.122600.

    33. [33]

      X. Xu, X. Wang, S. Huo, X. Liu, X. Ma, M. Liu, s, J. Adv. Mater. 36 (2023) 8, https://doi.org/10.1002/adma.202306844.

    34. [34]

      L. Yu, X. Pang, Z. Tian, S. Wang, L. Feng, Electrochim. Acta 440 (2023) 141724, https://doi.org/10.1016/j.electacta.2022.141724.

    35. [35]

      Q. Cao, W. Huang, J. Shou, X. Sun, K. Wang, Y. Zhao, R. Ding, W. Lin, E. Liu, P. Gao, J. Colloid Interface Sci. 629 (2023) 33, https://doi.org/10.1016/j.jcis.2022.08.095.

    36. [36]

      W. Shi, X. Sun, R. Ding, D. Ying, Y. Huang, Y. Huang, C. Tan, Z. Jia, E. Liu, Chem. Commun. 56 (2020) 48, https://doi.org/10.1039/d0cc02132f.

    37. [37]

      S. Xu, X. Ruan, M. Ganesan, J. Wu, S.K. Ravi, X. Cui, Adv. Funct. Mater. 34 (2024) 18, https://doi.org/10.1002/adfm.202313309.

    38. [38]

      P. Qiao, G. Li, X. Xu, D. Wang, F. Wang, L. Xu, L. Lu, H. Cong, M. Sun, Adv. Funct. Mater. 35 (2025) 2421136, https://doi.org/10.1002/adfm.202421136.

    39. [39]

      H.-M. Zhang, J. Li, Y. Gao, J. Sun, S. Geng, Y. Meng, Fuel 371 (2024) 132111, https://doi.org/10.1016/j.fuel.2024.132111.

    40. [40]

      Y. Gong, Y. Zhi, Y. Lin, T. Zhou, J. Li, F. Jiao, W. Wang, Dalton Trans. 48 (2019) 20, https://doi.org/10.1039/c9dt00957d.

    41. [41]

      Z. Chen, R. Zheng, H. Zou, R. Wang, C. Huang, W. Dai, W. Wei, L. Duan, B.-J. Ni, H. Chen, Chem. Eng. J. 465 (2023) 142684, https://doi.org/10.1016/j.cej.2023.142684.

    42. [42]

      Y. Zhao, F. Ma, Z. Wang, P. Wang, Y. Liu, H. Cheng, Y. Dai, Z. Zheng, B. Huang, J. Alloys Compd. 903 (2022) 163741, https://doi.org/10.1016/j.jallcom.2022.163741.

    43. [43]

      J. Jiang, G. Xu, B. Gong, J. Zhu, W. Wang, T. Zhao, Y. Feng, Q. Wu, S. Liu, L. Zhang, Adv. Funct. Mater. 35 (2024) 2, https://doi.org/10.1002/adfm.202412685.

    44. [44]

      X. Xu, H. Liao, L. Huang, S. Chen, R. Wang, S. Wu, Y. Wu, Z. Sun, H. Huang, Appl. Catal. B Environ. 341 (2024) 123312, https://doi.org/10.1016/j.apcatb.2023.123312.

    45. [45]

      Z. Fang, L. Peng, H. Lv, Y. Zhu, C. Yan, S. Wang, P. Kalyani, X. Wu, G. Yu, ACS Nano 11 (2017) 9, https://doi.org/10.1021/acsnano.7b05481.

    46. [46]

      L.-F. Zhai, Z.-X. Chen, J.-X. Qi, M. Sun, J. Hazard Mater. 428 (2022) 128245, https://doi.org/10.1016/j.jhazmat.2022.128245.

    47. [47]

      J. Huang, S. Wang, J. Nie, C. Huang, X. Zhang, B. Wang, J. Tang, C. Du, Z. Liu, J. Chen, Chem. Eng. J. 417 (2021) 128055, https://doi.org/10.1016/j.cej.2020.128055.

    48. [48]

      X. Wang, H. Tian, M. Pi, D. Zhang, S. Chen, Int. J. Hydrogen Energy 45 (2020) 22, https://doi.org/10.1016/j.ijhydene.2020.02.173.

    49. [49]

      J. Zhang, H. Ma, J. Ma, M. Hu, Q. Li, S. Chen, T. Ning, C. Ge, X. Liu, L. Xiao, et al., Acta Phys. Chim. Sin. 39 (2023) 2111037, https://doi.org/10.3866/PKU.WHXB202111037.

    50. [50]

      X. Yang, H. Zhang, W. Xu, B. Yu, Y. Liu, Z. Wu, Catal. Sci. Technol. 12 (2022) 14, https://doi.org/10.1039/d2cy00308b.

    51. [51]

      D. Ma, Y. Jia, Y. Li, H. Yang, F. Wang, X. Zheng, G. Shao, Q. Xiong, Z. Shen, M. Liu, et al., J. Mater. Sci. Technol. 197 (2024) 207, https://doi.org/10.1016/j.jmst.2024.01.054.

    52. [52]

      H.-L. Liao, X.-L. Wu, X.-J. Sun, Tungsten 6 (2024) 4, https://doi.org/10.1007/s42864-024-00267-z.

    53. [53]

      X. Li, Q. Hu, H. Wang, M. Chen, X. Hao, Y. Ma, J. Liu, K. Tang, A. Abudula, G. Guan, Appl. Catal. B Environ. 292 (2021) 120172, https://doi.org/10.1016/j.apcatb.2021.120172.

    54. [54]

      S. Sirisomboonchai, X. Li, N. Kitiphatpiboon, R. Channoo, S. Li, Y. Ma, S. Kongparakul, C. Samart, A. Abudula, G. Guan, J. Mater. Chem. A 8 (2020) 32, https://doi.org/10.1039/d0ta04172f.

    55. [55]

      L. Chen, Z.-H. Yin, J.-Y. Cui, C.-Q. Li, K. Song, H. Liu, J.-J. Wang, J. Am. Chem. Soc. 146 (2024) 39, https://doi.org/10.1021/jacs.4c09252.

  • 加载中
    1. [1]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return