PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池

石英彤 徐国桐 梁贵增 兰笛 张思远 王彦儒 李道浩 吴广磊

引用本文: 石英彤, 徐国桐, 梁贵增, 兰笛, 张思远, 王彦儒, 李道浩, 吴广磊. PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池[J]. 物理化学学报, 2025, 41(7): 100082. doi: 10.1016/j.actphy.2025.100082 shu
Citation:  Yingtong Shi, Guotong Xu, Guizeng Liang, Di Lan, Siyuan Zhang, Yanru Wang, Daohao Li, Guanglei Wu. PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries[J]. Acta Physico-Chimica Sinica, 2025, 41(7): 100082. doi: 10.1016/j.actphy.2025.100082 shu

PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池

    通讯作者: 王彦儒, yrwang1996@163.com; 李道浩, lidaohao@qdu.edu.cn; 吴广磊, wuguanglei@mail.xjtu.edu.cn
  • 基金项目:

    国家自然科学基金 52302272

    国家自然科学基金 52377026

    山东省泰山学者青年专家计划 tsqn202211124

    山东省泰山学者青年专家计划 tsqn202103057

    山东省自然科学基金 ZR2022QB023

    山东省自然科学基金 ZR2024ME046

    山东省高等学校青创人才引育计划“海洋多糖纤维基能源材料研究创新团队”及青岛大学生物纤维与生态纺织品国家重点实验室 ZKT10

    山东省高等学校青创人才引育计划“海洋多糖纤维基能源材料研究创新团队”及青岛大学生物纤维与生态纺织品国家重点实验室 GZRC202006

摘要: 锂硫(Li-S)电池因其高理论能量密度被视为下一代能源存储系统中最有前景的候选者之一。然而,Li-S电池的实际应用受到锂离子(Li+)传输效率低和由于穿梭效应引起的快速容量衰减的限制。在此,我们报道了一种复合材料,由聚乙二醇(PEG)和氮化钒(VN)纳米片涂覆在商业聚丙烯(PP)隔膜上,称为PEG-VN@PP隔膜。VN纳米片所表现出的超催化效应和吸附特性显著增强了多硫化物的转化,从而提高了Li-S电池的容量和稳定性。由于PEG的涂层,Li+被极性官能团吸引,实现了选择性传输,改善了Li+的传输效率和Li-S电池的倍率性能。使用硫质量负载为1.2 mg·cm−2的碳纳米管/硫阴极组装的Li-S电池,展现出高达782.0 mAh·g−1的比容量,并在1C (1675 mA·g−1)条件下经过700个循环后平均容量衰减为0.048%。

English

    1. [1]

      W. Jing, J. Zu, K. Zou, X. Dai, Y. Song, J. Sun, Y. Chen, Q. Tan, Y. Liu, J. Colloid Interface Sci. 635 (2023) 32, https://doi.org/10.1016/j.jcis.2022.12.089. doi: 10.1016/j.jcis.2022.12.089

    2. [2]

      H. Jia, J. Fan, P. Su, T. Guo, M. C. Liu, Small 20 (2024) 202311343, https://doi.org/10.1002/smll.202311343. doi: 10.1002/smll.202311343

    3. [3]

      W. Yao, J. Xu, L. Ma, X. Lu, D. Luo, J. Qian, L. Zhan, I. Manke, C. Yang, P. Adelhelm, R. Chen, Adv. Mater. 35 (2023) 2212116, https://doi.org/10.1002/adma.202212116. doi: 10.1002/adma.202212116

    4. [4]

      S. Xu, Z. Jia, D. Lan, Z. Gao, S. Zhang, G. Wu, Adv. Funct. Mater. 35 (2025) 2500304, https://doi.org/10.1002/adfm.202500304. doi: 10.1002/adfm.202500304

    5. [5]

      X. Liu, J. Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 29 (2017) 1601759, https://doi.org/10.1002/adma.201601759. doi: 10.1002/adma.201601759

    6. [6]

      H. Cheng, S. Zhang, S. Li, C. Gao, S. Zhao, Y. Lu, M. Wang, Small 18 (2022) 2202557, https://doi.org/10.1002/smll.202202557. doi: 10.1002/smll.202202557

    7. [7]

      A. Feng, L. Yu, D. Lan, C. Lv, S. Zhang, Z. Gao, Z. Guo, G. Wu, J. Mater. Sci. Technol. 228 (2025) 225, https://doi.org/10.1016/j.jmst.2025.02.001. doi: 10.1016/j.jmst.2025.02.001

    8. [8]

      G. Zhu, Q. Wu, X. Zhang, Y. Bao, X. Zhang, Z. Shi, Y. Zhang, L. Ma, Nano Res. 17 (2023) 2574, https://doi.org/10.1007/s12274-023-6227-4. doi: 10.1007/s12274-023-6227-4

    9. [9]

      S. K. Kannan, J. Joseph, M. G. Joseph, Energy Technol. 12 (2024) 2400174, https://doi.org/10.1002/ente.202400174. doi: 10.1002/ente.202400174

    10. [10]

      Y. Luan, X. Yan, C. Ji, C. Lv, D. Lan, S. Zhang, J. Sun, D. Li, G. Wu, J. Mater. Sci. Technol. 228 (2025) 279, https://doi.org/10.1016/j.jmst.2025.01.005. doi: 10.1016/j.jmst.2025.01.005

    11. [11]

      S. Lu, L. Cai, J. Wang, H. Ying, Z. Han, W. Han, Z. Chen, Small 20 (2024) 2307784, https://doi.org/10.1002/smll.202307784. doi: 10.1002/smll.202307784

    12. [12]

      R. Wang, J. Jiao, D. Liu, Y. He, Y. Yang, D. Sun, H. Pan, F. Fang, R. Wu, Small 20 (2024) 2405148, https://doi.org/10.1002/smll.202405148. doi: 10.1002/smll.202405148

    13. [13]

      Z. Cheng, J. Lian, J. Zhang, S. Xiang, B. Chen, Z. Zhang, Adv. Sci. 11 (2024) 2404834, https://doi.org/10.1002/advs.202404834. doi: 10.1002/advs.202404834

    14. [14]

      S. Lin, J. Dong, R. Chen, G. Zhang, T. Huang, J. Li, H. Zhou, L. H. Chung, X. Hu, J. He, et al., J. Alloy. Compd. 965 (2023) 171389, https://doi.org/10.1016/j.jallcom.2023.171389. doi: 10.1016/j.jallcom.2023.171389

    15. [15]

      Z. Li, J. Wang, H. Yuan, Y. Yu, Y. Tan, Adv. Funct. Mater. 34 (2024) 2405890, https://doi.org/10.1002/adfm.202405890. doi: 10.1002/adfm.202405890

    16. [16]

      Z. Shen, D. Lan, Y. Cong, Y. Lian, N. Wu, Z. Jia, J. Mater. Sci. Technol. 181 (2024) 128, https://doi.org/10.1016/j.jmst.2023.10.007. doi: 10.1016/j.jmst.2023.10.007

    17. [17]

      Y. C. Zhang, Y. W. Li, C. Han, Y. Qin, J. Zhang, J. Wu, J. Gao, X. D. Zhu, J. Colloid Interface Sci. 653 (2024) 664, https://doi.org/10.1016/j.jcis.2023.08.193. doi: 10.1016/j.jcis.2023.08.193

    18. [18]

      Q. Kuang, S. Feng, M. Yang, ACS Appl. Mater. Interfaces 16 (2024) 56051, https://doi.org/10.1021/acsami.4c10381. doi: 10.1021/acsami.4c10381

    19. [19]

      Z. Zhou, D. Lan, J. Ren, Y. Cheng, Z. Jia, G. Wu, P. Yin, J. Mater. Sci. Technol. 185 (2024) 165, https://doi.org/10.1016/j.jmst.2023.11.010. doi: 10.1016/j.jmst.2023.11.010

    20. [20]

      C. Jian, J. Li, J. Yuan, X. Wu, J. Li, Q. Liang, F. Wan, Z. Wu, B. Zhong, Y. Chen, X. Guo, et al. , Ionics 30 (2024) 3973, https://doi.org/10.1007/s11581-024-05559-5. doi: 10.1007/s11581-024-05559-5

    21. [21]

      S. Liu, Y. Liu, X. Zhang, M. Shen, X. Liu, X. Gao, L. Hou, C. Yuan, Nanomaterials 14 (2024) 656, https://doi.org/10.3390/nano14080656. doi: 10.3390/nano14080656

    22. [22]

      P. Yin, Y. Luo, D. Lan, J. Wang, X. Feng, Z. Jia, G. Wu, Y. Zhang, J. Mater. Sci. Technol. 180 (2024) 12, https://doi.org/10.1016/j.jmst.2023.08.057. doi: 10.1016/j.jmst.2023.08.057

    23. [23]

      L. Ma, Y. Wang, Z. Wang, J. Wang, Y. Cheng, J. Wu, B. Peng, J. Xu, W. Zhang, Z. Jin, ACS Nano 17 (2023) 11527, https://doi.org/10.1021/acsnano.3c01469. doi: 10.1021/acsnano.3c01469

    24. [24]

      Y. Shin, A. Le Mong, C. N. T. Linh, D. Kim, J. Mater. Chem. A 12 (2024) 13980, https://doi.org/10.1039/d4ta01569j. doi: 10.1039/d4ta01569j

    25. [25]

      J. Zheng, S. Mao, S. Zhang, J. Liu, Y. Song, S. Zhang, J. Alloy. Compd. 1022 (2025) 179884, https://doi.org/10.1016/j.jallcom.2025.179884. doi: 10.1016/j.jallcom.2025.179884

    26. [26]

      S. Zhang, J. Zheng, C. Lv, D. Lan, Q. Tian, Z. Gao, S. Zhang, Z. Zhao, S. Cai, G. Wu, et al., Carbon 234 (2025) 120037, https://doi.org/10.1016/j.carbon.2025.120037. doi: 10.1016/j.carbon.2025.120037

    27. [27]

      J. Liu, Y. Pan, L. Yu, Z. Gao, S. Zhang, D. Lan, Z. Jia, G. Wu, Carbon 238 (2025) 120233, https://doi.org/10.1016/j.carbon.2025.120233. doi: 10.1016/j.carbon.2025.120233

    28. [28]

      X. Xie, R. Liu, C. Chen, D. Lan, Z. Chen, W. Du, G. Wu, Int. J. Miner. Metall. Mater. 32 (2025) 566, https://doi.org/10.1007/s12613-024-3024-3. doi: 10.1007/s12613-024-3024-3

    29. [29]

      Z. Niu, Y. Wang, Q. Tian, J. Wang, Z. Gao, D. Lan, G. Wu, Carbon 233 (2025) 119848, https://doi.org/10.1016/j.carbon.2024.119848. doi: 10.1016/j.carbon.2024.119848

    30. [30]

      Y. Liu, W. Geng, L. Wang, H. Wang, R. Zhang, D. Lan, B. Fan, Chem. Eng. J. 505 (2025) 159489, https://doi.org/10.1016/j.cej.2025.159489. doi: 10.1016/j.cej.2025.159489

    31. [31]

      H. Jia, T. Guo, P. Su, M. Liu, W. Zhang, T. Huo, J. Fan, J. Power Sources 631 (2025) 236220, https://doi.org/10.1016/j.jpowsour.2025.236220. doi: 10.1016/j.jpowsour.2025.236220

    32. [32]

      T. Hu, D. Lan, J. Wang, X. Zhong, G. Bu, P. Yin, Carbon 232 (2025) 119798, https://doi.org/10.1016/j.carbon.2024.119798. doi: 10.1016/j.carbon.2024.119798

    33. [33]

      Z. Guo, X. Zhang, C. Lv, S. Zhang, Z. Gao, Z. Jia, D. Lan, G. Wu, Carbon 234 (2025) 120010, https://doi.org/10.1016/j.carbon.2025.120010. doi: 10.1016/j.carbon.2025.120010

    34. [34]

      Z. Guo, D. Lan, C. Zhang, Z. Gao, M. Han, X. Shi, M. He, H. Guo, Z. Jia, G. Wu, et al., J. Mater. Sci. Technol. 220 (2025) 307, https://doi.org/10.1016/j.jmst.2024.09.020. doi: 10.1016/j.jmst.2024.09.020

    35. [35]

      Y. Gu, Z. Chen, Z. Wang, S. Yu, L. Bi, J. Adv. Ceram. 14 (2025) 9221040, https://doi.org/10.26599/jac.2025.9221040. doi: 10.26599/jac.2025.9221040

    36. [36]

      R. Gan, Y. Zu, T. Zhang, C. Yang, C. Wang, B. Zeng, P. Liu, X. Li, F. Han, Y. Qian, et al., Ceram. Int. 2025, https://doi.org/10.1016/j.ceramint.2025.01.111. doi: 10.1016/j.ceramint.2025.01.111

    37. [37]

      X. Chen, D. Lan, L. Zhou, H. Liu, X. Song, S. Wang, Z. Zou, G. Wu, Int. J. Miner. Metall. Mater. 32 (2025) 591, https://doi.org/10.1007/s12613-024-3063-9. doi: 10.1007/s12613-024-3063-9

    38. [38]

      S. Zhang, J. Zheng, D. Lan, Z. Gao, X. Liang, Q. Tian, Z. Zhao, G. Wu, Adv. Funct. Mater. 35 (2025) 2413884, https://doi.org/10.1002/adfm.202413884. doi: 10.1002/adfm.202413884

    39. [39]

      M. Zhang, X. Zhang, S. Liu, W. Hou, Y. Lu, L. Hou, Y. Luo, Y. Liu, C. Yuan, ChemSusChem 17 (2024) e202400538, https://doi.org/10.1002/cssc.202400538. doi: 10.1002/cssc.202400538

    40. [40]

      J. Zhang, X. Zhu, T. Zhang, X. Liu, X. Elvis Cao, J. Shen, M. Shan, H. Yang, X. Shu, G. Xu, et al., Chem. Eng. J. 496 (2024) 154031, https://doi.org/10.1016/j.cej.2024.154031. doi: 10.1016/j.cej.2024.154031

    41. [41]

      H. Wang, X. Chen, H. Yu, X. Liang, Z. Li, M. Hu, L. Yang, P. Tsiakaras, S. Yin, Chem. Eng. J. 487 (2024) 150669, https://doi.org/10.1016/j.cej.2024.150669. doi: 10.1016/j.cej.2024.150669

    42. [42]

      M. Ren, F. Han, X. Zhu, Y. Peng, Y. Zu, P. Liu, A. Feng, Materials 17 (2024) 5932, https://doi.org/10.3390/ma17235932. doi: 10.3390/ma17235932

    43. [43]

      Y. Miao, M. Zhang, Q. Liu, T. Xi, Y. Liu, Y. Wang, C. Wang, A. Cui, Z. Tian, T. Wang, J. Liu, Q. Jia, D. Lan, Y. Bi, Z. Li, Carbon 235 (2025) 120076, https://doi.org/10.1016/j.carbon.2025.120076. doi: 10.1016/j.carbon.2025.120076

    44. [44]

      H. Yuan, Z. Wang, D. Lan, S. Zhang, Z. Zang, G. Jiang, H. Wei, Y. Zhang, J. Zheng, J. Ren, G. Wu, S. Jia, et al., Adv. Compos. Hybrid Mater. 8 (2025) 161, https://doi.org/10.1007/s42114-025-01222-3. doi: 10.1007/s42114-025-01222-3

    45. [45]

      X. Li, X. Zhu, A. Feng, M. An, P. Liu, Y. Zu, J. Mater. Res. Technol. 29 (2024) 5667, https://doi.org/10.1016/j.jmrt.2024.03.001. doi: 10.1016/j.jmrt.2024.03.001

    46. [46]

      X. Dong, S. Yu, Y. Gu, L. Bi, Sustain. Mater. Technol. 41 (2024) e01104, https://doi.org/10.1016/j.susmat.2024.e01104. doi: 10.1016/j.susmat.2024.e01104

    47. [47]

      H. Dai, H. Du, S. Boulfrad, S. Yu, L. Bi, Q. Zhang, J. Adv. Ceram. 13 (2024) 579, https://doi.org/10.26599/jac.2024.9220880. doi: 10.26599/jac.2024.9220880

    48. [48]

      A. Cui, C. Wang, Y. Miao, X. Wang, Y. Wang, D. Lan, S. Wu, G. Song, T. Wang, Z. Tian, et al., Adv. Funct. Mater. 35 (2025) 2420292, https://doi.org/10.1002/adfm.202420292. doi: 10.1002/adfm.202420292

    49. [49]

      H. Chen, C. Wang, H. Wu, L. Li, Y. Xing, C. Zhang, X. Long, Nat. Commun. 15 (2024) 9222, https://doi.org/10.1038/s41467-024-53714-3. doi: 10.1038/s41467-024-53714-3

    50. [50]

      P. Zhang, Y. Zhao, Y. Li, N. Li, S. R. P. Silva, G. Shao, P. Zhang, Adv. Sci. 10 (2023) 2206786, https://doi.org/10.1002/advs.202206786. doi: 10.1002/advs.202206786

    51. [51]

      Y. Yin, Y. Zhou, Y. Gu, L. Bi, J. Adv. Ceram. 12 (2023) 587, https://doi.org/10.26599/jac.2023.9220707. doi: 10.26599/jac.2023.9220707

    52. [52]

      Y. Yin, R. Zhou, H. Dai, X. Yang, Y. Gu, L. Bi, J. Adv. Ceram. 12 (2023) 1189, https://doi.org/10.26599/jac.2023.9220748. doi: 10.26599/jac.2023.9220748

    53. [53]

      Y. Yin, D. Xiao, S. Wu, E. H. Da'as, Y. Gu, L. Bi, SusMat 3 (2023) 697, https://doi.org/10.1002/sus2.156. doi: 10.1002/sus2.156

    54. [54]

      L. Wang, Y. Li, Y. Ai, E. Fan, F. Zhang, W. Zhang, G. Shao, P. Zhang, Adv. Funct. Mater. 33 (2023) 2306466, https://doi.org/10.1002/adfm.202306466. doi: 10.1002/adfm.202306466

    55. [55]

      Y. Zhang, Z. Wu, S. Wang, N. Li, S. R. P. Silva, G. Shao, P. Zhang, InfoMat 4 (2022) e12294, https://doi.org/10.1002/inf2.12294. doi: 10.1002/inf2.12294

    56. [56]

      R. Li, J. Li, Q. Liu, T. Li, D. Lan, Y. Ma, Adv. Compos. Hybrid Mater. 8 (2025) 86, https://doi.org/10.1007/s42114-024-01177-x. doi: 10.1007/s42114-024-01177-x

    57. [57]

      Y. Li, L. Wang, F. Zhang, W. Zhang, G. Shao, P. Zhang, Adv. Sci. 10 (2022) 2205020, https://doi.org/10.1002/advs.202205020. doi: 10.1002/advs.202205020

    58. [58]

      R. Hou, S. Zhang, Y. Zhang, N. Li, S. Wang, B. Ding, G. Shao, P. Zhang, Adv. Funct. Mater. 32 (2022) 2200302, https://doi.org/10.1002/adfm.202200302. doi: 10.1002/adfm.202200302

    59. [59]

      P. Li, H. Lv, Z. Li, X. Meng, Z. Lin, R. Wang, X. Li, Adv. Mater. 33 (2021) 2007803, https://doi.org/10.1002/adma.202007803. doi: 10.1002/adma.202007803

    60. [60]

      G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15, https://doi.org/10.1016/0927-0256(96)00008-0. doi: 10.1016/0927-0256(96)00008-0

    61. [61]

      T. Zhao, T. Zheng, D. Lan, Y. Zhang, Z. Sun, C. Wang, Z. Jia, G. Wu, Nano Res. 17 (2024) 1625,doi: 10.1007/s12274-023-6160-6.

    62. [62]

      J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865. doi: 10.1103/PhysRevLett.77.3865

    63. [63]

      R. Yang, D. Zhang, N. Li, H. Zhang, G. Zeng, D. Lan, Chem. Eng. J. 506 (2025) 160007, https://doi.org/10.1016/j.cej.2025.160007. doi: 10.1016/j.cej.2025.160007

    64. [64]

      G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758. doi: 10.1103/PhysRevB.59.1758

    65. [65]

      S. Yu, G. Qin, D. Lan, H. Xu, Z. Yan, Y. Zhou, B. Zhang, X. Su, Compos. Commun. 52 (2024) 102157, https://doi.org/10.1016/j.coco.2024.102157. doi: 10.1016/j.coco.2024.102157

    66. [66]

      Y. Zhao, X. Liu, Z. Liu, X. Lin, J. Lan, Y. Zhang, Y. Lu, M. Peng, T. Chan, Y. Tan, et al., Nano Lett. 21 (2021) 6907, https://doi.org/10.1021/acs.nanolett.1c02053. doi: 10.1021/acs.nanolett.1c02053

    67. [67]

      Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin, T. Ma, Angew. Chem. Int. Ed. 60 (2021) 12554, https://doi.org/10.1002/anie.202102832. doi: 10.1002/anie.202102832

    68. [68]

      F. Ma, Z. Chen, K. Srinivas, D. Liu, Z. Zhang, Y. Wu, M. Q. Zhu, Q. Wu, Y. Chen, Chem. Eng. J. 459 (2023) 141526, https://doi.org/10.1016/j.cej.2023.141526. doi: 10.1016/j.cej.2023.141526

    69. [69]

      S. Liu, D. Lan, K. Wang, Z. Gao, X. Sun, P. Yin, Mater. Res. Bull. 173 (2024) 112702, https://doi.org/10.1016/j.materresbull.2024.112702. doi: 10.1016/j.materresbull.2024.112702

    70. [70]

      J. Liu, L. Yu, Q. Ran, X. A. Chen, X. Wang, X. He, H. Jin, T. Chen, J. S. Chen, D. Guo, S. Wang, et al., Small 20 (2024) 2311750, https://doi.org/10.1002/smll.202311750. doi: 10.1002/smll.202311750

    71. [71]

      F. Shen, Y. Wan, H. Yao, X. Liu, D. Lan, J. Alloy. Compd. 1005 (2024) 176229, https://doi.org/10.1016/j.jallcom.2024.176229. doi: 10.1016/j.jallcom.2024.176229

    72. [72]

      B. Zhao, D. Lan, M. Zhang, L. Liu, N. Wu, S. Yao, Mater. Res. Bull. 171 (2024) 112621, https://doi.org/10.1016/j.materresbull.2023.112621. doi: 10.1016/j.materresbull.2023.112621

    73. [73]

      R. Li, F. Zhang, C. Li, Y. Cui, J. Wen, D. Lv, Y. Chen, Y. Wei, H. Wei, J. Bu, J. Mater. Sci. Mater. Electron. 34 (2023) 293, https://doi.org/10.1007/s10854-022-09727-z. doi: 10.1007/s10854-022-09727-z

    74. [74]

      C. Yin, W. Fu, L. Fang, S. You, H. Zhang, Y. Wang, J. Electrochem. 25 (2019) 579, https://doi.org/10.13208/j.electrochem.181142. doi: 10.13208/j.electrochem.181142

    75. [75]

      T. D. Nguyen, S. Roh, M. T. N. Nguyen, Y. Nam, D. J. Kim, B. Lim, Y. S. Yoon, J. S. Lee, Chem. Eng. J. 497 (2024) 154430, https://doi.org/10.1016/j.cej.2024.154430. doi: 10.1016/j.cej.2024.154430

    76. [76]

      Q. Yang, N. Deng, Y. Zhao, L. Gao, B. Cheng, W. Kang, Chem. Eng. J. 451 (2023) 138532, https://doi.org/10.1016/j.cej.2022.138532. doi: 10.1016/j.cej.2022.138532

    77. [77]

      Y. Kong, L. Wang, M. Mamoor, B. Wang, G. Qu, Z. Jing, Y. Pang, F. Wang, X. Yang, D. Wang, L. Xu, et al., Adv. Mater. 36 (2024) 2310143, https://doi.org/10.1002/adma.202310143. doi: 10.1002/adma.202310143

    78. [78]

      M. Chen, M. Shao, J. Jin, L. Cui, H. Tu, X. Fu, Energy Storage Mater. 47 (2022) 629, https://doi.org/10.1016/j.ensm.2022.02.051. doi: 10.1016/j.ensm.2022.02.051

    79. [79]

      H. Yang, L. Li, Y. Shan, X. Chen, Y. Zhao, S. Fan, Appl. Surf. Sci. 635 (2023) 157738, https://doi.org/10.1016/j.apsusc.2023.157738. doi: 10.1016/j.apsusc.2023.157738

    80. [80]

      L. Gai, H. Zhao, X. Li, P. Wang, S. Yu, Y. Chen, C. Wang, D. Lan, F. Han, Y. Du, et al., Chem. Eng. J. 501 (2024) 157556, https://doi.org/10.1016/j.cej.2024.157556. doi: 10.1016/j.cej.2024.157556

    81. [81]

      R. Qiang, R. Xue, D. Lan, Y. Shao, Y. Chen, X. Yang, G. Wu, J. Mater. Chem. C, 12 (2024) 17890, https://doi.org/10.1039/D4TC03287J. doi: 10.1039/D4TC03287J

    82. [82]

      Y. Yang, W. Wang, J. Zhang, Angew. Chem. Int. Ed. 64 (2024) e202417031, https://doi.org/10.1002/anie.202417031. doi: 10.1002/anie.202417031

    83. [83]

      X. Yang, J. Liu, F. Chu, J. Lei, F. Wu, Mater. Today Energy 35 (2023) 101318, https://doi.org/10.1016/j.mtener.2023.101318. doi: 10.1016/j.mtener.2023.101318

    84. [84]

      Q. Wang, Y. Bai, N. Zhao, L. Wang, F. Zhang, Y. Zhu, D. Lan, R. Zhang, H. Wang, B. Fan, et al., Ceram. Int. 50 (2024) 49217, https://doi.org/10.1016/j.ceramint.2024.09.264. doi: 10.1016/j.ceramint.2024.09.264

    85. [85]

      J. Wu, Q. Feng, Y. Wang, J. Wang, X. Zhao, L. Zhan, M. Liu, Z. Jin, Z. Chen, Y. Lei, et al. , Chem. Commun. 59 (2023) 2966, https://doi.org/10.1039/d2cc06893a. doi: 10.1039/d2cc06893a

    86. [86]

      X. Luo, T. Liu, C. Wei, D. Lan, X. Li, Y. Ma, H. Xie, F. Yu, G. Wu, Sustain. Mater. Technol. 42 (2024) e01127, https://doi.org/10.1016/j.susmat.2024.e01127. doi: 10.1016/j.susmat.2024.e01127

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  152
  • HTML全文浏览量:  18
文章相关
  • 发布日期:  2025-07-15
  • 收稿日期:  2025-01-17
  • 接受日期:  2025-03-18
  • 修回日期:  2025-03-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章