Citation: Yingtong Shi,  Guotong Xu,  Guizeng Liang,  Di Lan,  Siyuan Zhang,  Yanru Wang,  Daohao Li,  Guanglei Wu. PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100082. doi: 10.1016/j.actphy.2025.100082 shu

PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池

  • Received Date: 17 January 2025
    Revised Date: 14 March 2025
    Accepted Date: 18 March 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (52302272, 52377026), Taishan Scholars and Young Experts Program of Shandong Province (tsqn202211124, tsqn202103057), the Natural Science Foundation of Shandong Province (ZR2022QB023, ZR2024ME046), the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Marine Polysaccharides Fibers-based Energy Materials), the State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University (ZKT10, GZRC202006).

  • 锂硫(Li-S)电池因其高理论能量密度被视为下一代能源存储系统中最有前景的候选者之一。然而,Li-S电池的实际应用受到锂离子(Li+)传输效率低和由于穿梭效应引起的快速容量衰减的限制。在此,我们报道了一种复合材料,由聚乙二醇(PEG)和氮化钒(VN)纳米片涂覆在商业聚丙烯(PP)隔膜上,称为PEG-VN@PP隔膜。VN纳米片所表现出的超催化效应和吸附特性显著增强了多硫化物的转化,从而提高了Li-S电池的容量和稳定性。由于PEG的涂层,Li+被极性官能团吸引,实现了选择性传输,改善了Li+的传输效率和Li-S电池的倍率性能。使用硫质量负载为1.2 mg·cm-2的碳纳米管/硫阴极组装的Li-S电池,展现出高达782.0 mAh·g-1的比容量,并在1C (1675 mA·g-1)条件下经过700个循环后平均容量衰减为0.048%。
  • 加载中
    1. [1]

      W. Jing, J. Zu, K. Zou, X. Dai, Y. Song, J. Sun, Y. Chen, Q. Tan, Y. Liu, J. Colloid Interface Sci. 635(2023) 32, https://doi.org/10.1016/j.jcis.2022.12.089.

    2. [2]

      H. Jia, J. Fan, P. Su, T. Guo, M.C. Liu, Small 20(2024) 202311343, https://doi.org/10.1002/smll.202311343.

    3. [3]

      W. Yao, J. Xu, L. Ma, X. Lu, D. Luo, J. Qian, L. Zhan, I. Manke, C. Yang, P. Adelhelm, R. Chen, Adv. Mater. 35(2023) 2212116, https://doi.org/10.1002/adma.202212116.

    4. [4]

      S. Xu, Z. Jia, D. Lan, Z. Gao, S. Zhang, G. Wu, Adv. Funct. Mater. 35(2025) 2500304, https://doi.org/10.1002/adfm.202500304.

    5. [5]

      X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 29(2017) 1601759, https://doi.org/10.1002/adma.201601759.

    6. [6]

      H. Cheng, S. Zhang, S. Li, C. Gao, S. Zhao, Y. Lu, M. Wang, Small 18(2022) 2202557, https://doi.org/10.1002/smll.202202557.

    7. [7]

      A. Feng, L. Yu, D. Lan, C. Lv, S. Zhang, Z. Gao, Z. Guo, G. Wu, J. Mater. Sci. Technol. 228(2025) 225, https://doi.org/10.1016/j.jmst.2025.02.001.

    8. [8]

      G. Zhu, Q. Wu, X. Zhang, Y. Bao, X. Zhang, Z. Shi, Y. Zhang, L. Ma, Nano Res. 17(2023) 2574, https://doi.org/10.1007/s12274-023-6227-4.

    9. [9]

      S.K. Kannan, J. Joseph, M.G. Joseph, Energy Technol. 12(2024) 2400174, https://doi.org/10.1002/ente.202400174.

    10. [10]

      Y. Luan, X. Yan, C. Ji, C. Lv, D. Lan, S. Zhang, J. Sun, D. Li, G. Wu, J. Mater. Sci. Technol. 228(2025) 279, https://doi.org/10.1016/j.jmst.2025.01.005.

    11. [11]

      S. Lu, L. Cai, J. Wang, H. Ying, Z. Han, W. Han, Z. Chen, Small 20(2024) 2307784, https://doi.org/10.1002/smll.202307784.

    12. [12]

      R. Wang, J. Jiao, D. Liu, Y. He, Y. Yang, D. Sun, H. Pan, F. Fang, R. Wu, Small 20(2024) 2405148, https://doi.org/10.1002/smll.202405148.

    13. [13]

      Z. Cheng, J. Lian, J. Zhang, S. Xiang, B. Chen, Z. Zhang, Adv. Sci. 11(2024) 2404834, https://doi.org/10.1002/advs.202404834.

    14. [14]

      S. Lin, J. Dong, R. Chen, G. Zhang, T. Huang, J. Li, H. Zhou, L. H. Chung, X. Hu, J. He, et al., J. Alloy. Compd. 965(2023) 171389, https://doi.org/10.1016/j.jallcom.2023.171389.

    15. [15]

      Z. Li, J. Wang, H. Yuan, Y. Yu, Y. Tan, Adv. Funct. Mater. 34(2024) 2405890, https://doi.org/10.1002/adfm.202405890.

    16. [16]

      Z. Shen, D. Lan, Y. Cong, Y. Lian, N. Wu, Z. Jia, J. Mater. Sci. Technol. 181(2024) 128, https://doi.org/10.1016/j.jmst.2023.10.007.

    17. [17]

      Y. C. Zhang, Y. W. Li, C. Han, Y. Qin, J. Zhang, J. Wu, J. Gao, X. D. Zhu, J. Colloid Interface Sci. 653(2024) 664, https://doi.org/10.1016/j.jcis.2023.08.193.

    18. [18]

      Q. Kuang, S. Feng, M. Yang, ACS Appl. Mater. Interfaces 16(2024) 56051, https://doi.org/10.1021/acsami.4c10381.

    19. [19]

      Z. Zhou, D. Lan, J. Ren, Y. Cheng, Z. Jia, G. Wu, P. Yin, J. Mater. Sci. Technol. 185(2024) 165, https://doi.org/10.1016/j.jmst.2023.11.010.

    20. [20]

      C. Jian, J. Li, J. Yuan, X. Wu, J. Li, Q. Liang, F. Wan, Z. Wu, B. Zhong, Y. Chen, X. Guo, et al., Ionics 30(2024) 3973, https://doi.org/10.1007/s11581-024-05559-5.

    21. [21]

      S. Liu, Y. Liu, X. Zhang, M. Shen, X. Liu, X. Gao, L. Hou, C. Yuan, Nanomaterials 14(2024) 656, https://doi.org/10.3390/nano14080656.

    22. [22]

      P. Yin, Y. Luo, D. Lan, J. Wang, X. Feng, Z. Jia, G. Wu, Y. Zhang, J. Mater. Sci. Technol. 180(2024) 12, https://doi.org/10.1016/j.jmst.2023.08.057.

    23. [23]

      L. Ma, Y. Wang, Z. Wang, J. Wang, Y. Cheng, J. Wu, B. Peng, J. Xu, W. Zhang, Z. Jin, ACS Nano 17(2023) 11527, https://doi.org/10.1021/acsnano.3c01469.

    24. [24]

      Y. Shin, A. Le Mong, C.N.T. Linh, D. Kim, J. Mater. Chem. A 12(2024) 13980, https://doi.org/10.1039/d4ta01569j.

    25. [25]

      J. Zheng, S. Mao, S. Zhang, J. Liu, Y. Song, S. Zhang, J. Alloy. Compd. 1022(2025) 179884, https://doi.org/10.1016/j.jallcom.2025.179884.

    26. [26]

      S. Zhang, J. Zheng, C. Lv, D. Lan, Q. Tian, Z. Gao, S. Zhang, Z. Zhao, S. Cai, G. Wu, et al., Carbon 234(2025) 120037, https://doi.org/10.1016/j.carbon.2025.120037.

    27. [27]

      J. Liu, Y. Pan, L. Yu, Z. Gao, S. Zhang, D. Lan, Z. Jia, G. Wu, Carbon 238(2025) 120233, https://doi.org/10.1016/j.carbon.2025.120233.

    28. [28]

      X. Xie, R. Liu, C. Chen, D. Lan, Z. Chen, W. Du, G. Wu, Int. J. Miner. Metall. Mater. 32(2025) 566, https://doi.org/10.1007/s12613-024-3024-3.

    29. [29]

      Z. Niu, Y. Wang, Q. Tian, J. Wang, Z. Gao, D. Lan, G. Wu, Carbon 233(2025) 119848, https://doi.org/10.1016/j.carbon.2024.119848.

    30. [30]

      Y. Liu, W. Geng, L. Wang, H. Wang, R. Zhang, D. Lan, B. Fan, Chem. Eng. J. 505(2025) 159489, https://doi.org/10.1016/j.cej.2025.159489.

    31. [31]

      H. Jia, T. Guo, P. Su, M. Liu, W. Zhang, T. Huo, J. Fan, J. Power Sources 631(2025) 236220, https://doi.org/10.1016/j.jpowsour.2025.236220.

    32. [32]

      T. Hu, D. Lan, J. Wang, X. Zhong, G. Bu, P. Yin, Carbon 232(2025) 119798, https://doi.org/10.1016/j.carbon.2024.119798.

    33. [33]

      Z. Guo, X. Zhang, C. Lv, S. Zhang, Z. Gao, Z. Jia, D. Lan, G. Wu, Carbon 234(2025) 120010, https://doi.org/10.1016/j.carbon.2025.120010.

    34. [34]

      Z. Guo, D. Lan, C. Zhang, Z. Gao, M. Han, X. Shi, M. He, H. Guo, Z. Jia, G. Wu, et al., J. Mater. Sci. Technol. 220(2025) 307, https://doi.org/10.1016/j.jmst.2024.09.020.

    35. [35]

      Y. Gu, Z. Chen, Z. Wang, S. Yu, L. Bi, J. Adv. Ceram. 14(2025) 9221040, https://doi.org/10.26599/jac.2025.9221040.

    36. [36]

    37. [37]

      R. Gan, Y. Zu, T. Zhang, C. Yang, C. Wang, B. Zeng, P. Liu, X. Li, F. Han, Y. Qian, et al., Ceram. Int. 2025, https://doi.org/10.1016/j.ceramint.2025.01.111.

    38. [38]

      X. Chen, D. Lan, L. Zhou, H. Liu, X. Song, S. Wang, Z. Zou, G. Wu, Int. J. Miner. Metall. Mater. 32(2025) 591, https://doi.org/10.1007/s12613-024-3063-9.

    39. [39]

      S. Zhang, J. Zheng, D. Lan, Z. Gao, X. Liang, Q. Tian, Z. Zhao, G. Wu, Adv. Funct. Mater. 35(2025) 2413884, https://doi.org/10.1002/adfm.202413884.

    40. [40]

      M. Zhang, X. Zhang, S. Liu, W. Hou, Y. Lu, L. Hou, Y. Luo, Y. Liu, C. Yuan, ChemSusChem 17(2024) e202400538, https://doi.org/10.1002/cssc.202400538.

    41. [41]

      J. Zhang, X. Zhu, T. Zhang, X. Liu, X. Elvis Cao, J. Shen, M. Shan, H. Yang, X. Shu, G. Xu, et al., Chem. Eng. J. 496(2024) 154031, https://doi.org/10.1016/j.cej.2024.154031.

    42. [42]

      H. Wang, X. Chen, H. Yu, X. Liang, Z. Li, M. Hu, L. Yang, P. Tsiakaras, S. Yin, Chem. Eng. J. 487(2024) 150669, https://doi.org/10.1016/j.cej.2024.150669.

    43. [43]

      M. Ren, F. Han, X. Zhu, Y. Peng, Y. Zu, P. Liu, A. Feng, Materials 17(2024) 5932, https://doi.org/10.3390/ma17235932.

    44. [44]

      Y. Miao, M. Zhang, Q. Liu, T. Xi, Y. Liu, Y. Wang, C. Wang, A. Cui, Z. Tian, T. Wang, J. Liu, Q. Jia, D. Lan, Y. Bi, Z. Li, Carbon 235(2025) 120076, https://doi.org/10.1016/j.carbon.2025.120076.

    45. [45]

      H. Yuan, Z. Wang, D. Lan, S. Zhang, Z. Zang, G. Jiang, H. Wei, Y. Zhang, J. Zheng, J. Ren, G. Wu, S. Jia, et al., Adv. Compos. Hybrid Mater. 8(2025) 161, https://doi.org/10.1007/s42114-025-01222-3.

    46. [46]

      X. Li, X. Zhu, A. Feng, M. An, P. Liu, Y. Zu, J. Mater. Res. Technol. 29(2024) 5667, https://doi.org/10.1016/j.jmrt.2024.03.001.

    47. [47]

      X. Dong, S. Yu, Y. Gu, L. Bi, Sustain. Mater.Technol. 41(2024) e01104, https://doi.org/10.1016/j.susmat.2024.e01104.

    48. [48]

      H. Dai, H. Du, S. Boulfrad, S. Yu, L. Bi, Q. Zhang, J. Adv. Ceram. 13(2024) 579, https://doi.org/10.26599/jac.2024.9220880.

    49. [49]

      A. Cui, C. Wang, Y. Miao, X. Wang, Y. Wang, D. Lan, S. Wu, G. Song, T. Wang, Z. Tian, et al., Adv. Funct. Mater. 35(2025) 2420292, https://doi.org/10.1002/adfm.202420292.

    50. [50]

      H. Chen, C. Wang, H. Wu, L. Li, Y. Xing, C. Zhang, X. Long, Nat. Commun. 15(2024) 9222, https://doi.org/10.1038/s41467-024-53714-3.

    51. [51]

      P. Zhang, Y. Zhao, Y. Li, N. Li, S. R. P. Silva, G. Shao, P. Zhang, Adv. Sci. 10(2023) 2206786, https://doi.org/10.1002/advs.202206786.

    52. [52]

      Y. Yin, Y. Zhou, Y. Gu, L. Bi, J. Adv. Ceram. 12(2023) 587, https://doi.org/10.26599/jac.2023.9220707.

    53. [53]

      Y. Yin, R. Zhou, H. Dai, X. Yang, Y. Gu, L. Bi, J. Adv. Ceram. 12(2023) 1189, https://doi.org/10.26599/jac.2023.9220748.

    54. [54]

      Y. Yin, D. Xiao, S. Wu, E.H. Da'as, Y. Gu, L. Bi, SusMat 3(2023) 697, https://doi.org/10.1002/sus2.156.

    55. [55]

      L. Wang, Y. Li, Y. Ai, E. Fan, F. Zhang, W. Zhang, G. Shao, P. Zhang, Adv. Funct. Mater. 33(2023) 2306466, https://doi.org/10.1002/adfm.202306466.

    56. [56]

      Y. Zhang, Z. Wu, S. Wang, N. Li, S.R.P. Silva, G. Shao, P. Zhang, InfoMat 4(2022) e12294, https://doi.org/10.1002/inf2.12294.

    57. [57]

      R. Li, J. Li, Q. Liu, T. Li, D. Lan, Y. Ma, Adv. Compos. Hybrid Mater. 8(2025) 86, https://doi.org/10.1007/s42114-024-01177-x.

    58. [58]

      Y. Li, L. Wang, F. Zhang, W. Zhang, G. Shao, P. Zhang, Adv. Sci. 10(2022) 2205020, https://doi.org/10.1002/advs.202205020.

    59. [59]

      R. Hou, S. Zhang, Y. Zhang, N. Li, S. Wang, B. Ding, G. Shao, P. Zhang, Adv. Funct. Mater. 32(2022) 2200302, https://doi.org/10.1002/adfm.202200302.

    60. [60]

      P. Li, H. Lv, Z. Li, X. Meng, Z. Lin, R. Wang, X. Li, Adv. Mater. 33(2021) 2007803, https://doi.org/10.1002/adma.202007803.

    61. [61]

      G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6(1996) 15, https://doi.org/10.1016/0927-0256(96)00008-0.

    62. [62]

      T. Zhao, T. Zheng, D. Lan, Y. Zhang, Z. Sun, C. Wang, Z. Jia, G. Wu, Nano Res. 17(2024) 1625, doi: 10.1007/s12274-023-6160-6.

    63. [63]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865.

    64. [64]

      R. Yang, D. Zhang, N. Li, H. Zhang, G. Zeng, D. Lan, Chem. Eng. J. 506(2025) 160007, https://doi.org/10.1016/j.cej.2025.160007.

    65. [65]

      G. Kresse, D. Joubert, Phys. Rev. B 59(1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758.

    66. [66]

      S. Yu, G. Qin, D. Lan, H. Xu, Z. Yan, Y. Zhou, B. Zhang, X. Su, Compos. Commun. 52(2024) 102157, https://doi.org/10.1016/j.coco.2024.102157.

    67. [67]

      Y. Zhao, X. Liu, Z. Liu, X. Lin, J. Lan, Y. Zhang, Y. Lu, M. Peng, T. Chan, Y. Tan, et al., Nano Lett. 21(2021) 6907, https://doi.org/10.1021/acs.nanolett.1c02053.

    68. [68]

      Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin, T. Ma, Angew. Chem. Int. Ed. 60(2021) 12554, https://doi.org/10.1002/anie.202102832.

    69. [69]

      F. Ma, Z. Chen, K. Srinivas, D. Liu, Z. Zhang, Y. Wu, M. Q. Zhu, Q. Wu, Y. Chen, Chem. Eng. J. 459(2023) 141526, https://doi.org/10.1016/j.cej.2023.141526.

    70. [70]

      S. Liu, D. Lan, K. Wang, Z. Gao, X. Sun, P. Yin, Mater. Res. Bull. 173(2024) 112702, https://doi.org/10.1016/j.materresbull.2024.112702.

    71. [71]

      J. Liu, L. Yu, Q. Ran, X.A. Chen, X. Wang, X. He, H. Jin, T. Chen, J.S. Chen, D. Guo, S. Wang, et al., Small 20(2024) 2311750, https://doi.org/10.1002/smll.202311750.

    72. [72]

      F. Shen, Y. Wan, H. Yao, X. Liu, D. Lan, J. Alloy. Compd. 1005(2024) 176229, https://doi.org/10.1016/j.jallcom.2024.176229.

    73. [73]

      B. Zhao, D. Lan, M. Zhang, L. Liu, N. Wu, S. Yao, Mater. Res. Bull. 171(2024) 112621, https://doi.org/10.1016/j.materresbull.2023.112621.

    74. [74]

      R. Li, F. Zhang, C. Li, Y. Cui, J. Wen, D. Lv, Y. Chen, Y. Wei, H. Wei, J. Bu, J. Mater. Sci. Mater. Electron. 34(2023) 293, https://doi.org/10.1007/s10854-022-09727-z.

    75. [75]

      C. Yin, W. Fu, L. Fang, S. You, H. Zhang, Y. Wang, J. Electrochem. 25(2019) 579, https://doi.org/10.13208/j.electrochem.181142.

    76. [76]

      T.D. Nguyen, S. Roh, M.T.N. Nguyen, Y. Nam, D. J. Kim, B. Lim, Y.S. Yoon, J.S. Lee, Chem. Eng. J. 497(2024) 154430, https://doi.org/10.1016/j.cej.2024.154430.

    77. [77]

      Q. Yang, N. Deng, Y. Zhao, L. Gao, B. Cheng, W. Kang, Chem. Eng. J. 451(2023) 138532, https://doi.org/10.1016/j.cej.2022.138532.

    78. [78]

      Y. Kong, L. Wang, M. Mamoor, B. Wang, G. Qu, Z. Jing, Y. Pang, F. Wang, X. Yang, D. Wang, L. Xu, et al., Adv. Mater. 36(2024) 2310143, https://doi.org/10.1002/adma.202310143.

    79. [79]

      M. Chen, M. Shao, J. Jin, L. Cui, H. Tu, X. Fu, Energy Storage Mater. 47(2022) 629, https://doi.org/10.1016/j.ensm.2022.02.051.

    80. [80]

      H. Yang, L. Li, Y. Shan, X. Chen, Y. Zhao, S. Fan, Appl. Surf. Sci. 635(2023) 157738, https://doi.org/10.1016/j.apsusc.2023.157738.

    81. [81]

      L. Gai, H. Zhao, X. Li, P. Wang, S. Yu, Y. Chen, C. Wang, D. Lan, F. Han, Y. Du, et al., Chem. Eng. J. 501(2024) 157556, https://doi.org/10.1016/j.cej.2024.157556.

    82. [82]

      R. Qiang, R. Xue, D. Lan, Y. Shao, Y. Chen, X. Yang, G. Wu, J. Mater. Chem. C, 12(2024) 17890, https://doi.org/10.1039/D4TC03287J.

    83. [83]

      Y. Yang, W. Wang, J. Zhang, Angew. Chem. Int. Ed. 64(2024) e202417031, https://doi.org/10.1002/anie.202417031.

    84. [84]

      X. Yang, J. Liu, F. Chu, J. Lei, F. Wu, Mater. Today Energy 35(2023) 101318, https://doi.org/10.1016/j.mtener.2023.101318.

    85. [85]

      Q. Wang, Y. Bai, N. Zhao, L. Wang, F. Zhang, Y. Zhu, D. Lan, R. Zhang, H. Wang, B. Fan, et al., Ceram. Int. 50(2024) 49217, https://doi.org/10.1016/j.ceramint.2024.09.264.

    86. [86]

      J. Wu, Q. Feng, Y. Wang, J. Wang, X. Zhao, L. Zhan, M. Liu, Z. Jin, Z. Chen, Y. Lei, et al., Chem. Commun. 59(2023) 2966, https://doi.org/10.1039/d2cc06893a.

    87. [87]

      X. Luo, T. Liu, C. Wei, D. Lan, X. Li, Y. Ma, H. Xie, F. Yu, G. Wu, Sustain. Mater. Technol. 42(2024) e01127, https://doi.org/10.1016/j.susmat.2024.e01127.

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    8. [8]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    14. [14]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    15. [15]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    18. [18]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(115)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return