Citation:
Yu Wang, Haiyang Shi, Zihan Chen, Feng Chen, Ping Wang, Xuefei Wang. 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性[J]. Acta Physico-Chimica Sinica,
;2025, 41(7): 100081.
doi:
10.1016/j.actphy.2025.100081
-
铂(Pt)作为优异的氧还原助催化剂,在光催化产H2O2方面具有巨大潜力。然而,Pt对O2的吸附能力过强,易使O―O键裂解,从而降低2电子氧还原反应(ORR)生成H2O2的选择性。在本研究中,通过调节助剂结构改变Pt的电子结构,从而削弱Pt―O键的强度。本文通过两步光沉积法在BiVO4的(010)面上连续修饰了铂和银助催化剂。由于在此过程中存在置换反应,最终合成了一种具有中空AgPt合金核和富电子Ptδ-壳(AgPt@Pt)结构的协同催化剂。光催化实验结果表明:修饰空心结构AgPt@Pt助剂的BiVO4产生H2O2的速率达到了1021.5 μmol·L-1,且其对应的量子效率(AQE)为5.07%,是Pt/BiVO4光催化剂(35.7 μmol·L-1)的28.6倍。此外,密度泛函理论计算和X射线光电子能谱表征表明:AgPt合金向Pt壳转移电子,生成富电子的Ptδ-活性位点,进而增加了AgPt@Pt助催化剂中Pt―Oads反键轨道的占有率。这种电子再分布削弱了O2在Pt上的吸附强度,促进了2电子ORR反应,并显著提高了H2O2的生成效率。这一合成策略为制备具有更高H2O2选择性的铂基纳米助催化剂提供了可靠的方法。
-
Keywords:
- Photocatalysis,
- Electron-rich Ptδ-,
- O2-adsorption,
- H2O2,
- BiVO4
-
-
-
[1]
X. Zhu, B. Xiao, J. Su, S. Wang, Q. Zhang, J. Wang, Acta Phys. Chim. Sin. 40 (2024) 2407005, https://doi.org/10.3866/PKU.WHXB202407005.
-
[2]
A. Fink, R. Delima, A. Rousseau, C. Hunt, N. LeSage, A. Huang, M. Stolar, C. Berlinguette, Nat. Commun. 15(2024) 766, https://doi.org/10.1038/s41467-024-44741-1.
-
[3]
Y. Luo, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 497(2024) 154886, https://doi.org/10.1016/j.cej.2024.154886.
-
[4]
Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11(2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.
-
[5]
X. Zhou, C. Ai, X Wang, Z. Wu, J. Zhang, J. Materiomics 11(2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.
-
[6]
S. Ho-Kimura, ACS Appl. Energy Mater. 7(2024) 1902, https://doi.org/10.1021/acsaem.3c02981.
-
[7]
C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15(2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.
-
[8]
J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36(2024) 2400288, https://doi.org/10.1002/adma.202400288.
-
[9]
Y. Yang, B. Cheng, J. Yu, L. Wang, W. Ho, Nano Res. 16(2023) 4506, https://doi.org/10.1007/s12274-021-3733-0.
-
[10]
X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15(2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.
-
[11]
H. Shi, S. Li, M. Wang, X. Yin, J. Huang, W. Qi, X. Wang, P. Wang, F. Chen, H. Yu, Catal. Sci. Technol. 13(2023) 3884, https://doi.org/10.1039/D3CY00331K.
-
[12]
L. Lin, Z. Sun, H. Chen, L. Zhao, M. Sun, Y. Yang, Z. Liao, X. Wu, X. Li, C. Tang, Acta Phys. Chim. Sin. 40(2024) 2305019, https://doi.org/10.3866/PKU.WHXB202305019.
-
[13]
Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11(2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970.
-
[14]
K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36(2024) 2406460, https://doi.org/10.1002/adma.202406460.
-
[15]
J. Huang, H. Shi, X. Wang, P. Wang, F. Chen, H. Yu, Catal. Sci. Technol. 14(2024) 2514, https://doi.org/10.1039/D4CY00141A.
-
[16]
Y. Li, Z. Liu, W. Qi, H. Shi, K. Wang, X. Wang, P. Wang, F. Chen, H. Yu, Appl. Surf. Sci. 656(2024) 159664, https://doi.org/10.1016/j.apsusc.2024.159664.
-
[17]
Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40(2024) 2407012, https://doi.org/10.3866/PKU.WHXB202407012.
-
[18]
H. Shi, Y. Li, K. Wang, S. Li, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 443(2022) 136429, https://doi.org/10.1016/j.cej.2022.136429.
-
[19]
Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57(2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.
-
[20]
H. Chen, L. Nie, K. Xu, Y. Yang, C. Fang, Acta Phys. Chim. Sin. 40(2024) 2406019, https://doi.org/10.3866/PKU.WHXB202406019.
-
[21]
H. Lee, H. Nam, G. Han, Y. Cho, B. Yeo, M. Kim, D. Kim, K. Lee, S. Lee, S Han, Acta Mater. 205(2021) 116563, https://doi.org/10.1016/j.actamat.2020.116563.
-
[22]
B. Park, W. Park, J. Choi, W. Choi, Y. Sung, S. Sul, O. Kwon, H. Song, Chem. Sci. 14(2023) 7553, https://doi.org/10.1039/D3SC01429K.
-
[23]
S. He, D. Chu, Z. Pang, Y. Du, J. Wang, Y. Chen, Y. Su, J. Qin, X. Pan, Z. Zhou, et al., Acta Phys. Chim. Sin. 41(2025) 2408006, https://doi.org/10.3866/PKU.WHXB202408006.
-
[24]
Y. Xia, B. Zhu, X. Qin, W. Ho, J. Yu, Chem. Eng. J. 467(2023) 143528, https://doi.org/10.1016/j.cej.2023.143528.
-
[25]
B. He, C. Luo, Z. Wang, L. Zhang, J. Yu, Appl. Catal., B. 323(2022) 1222000, https://doi.org/10.1016/j.apcatb.2022.122200.
-
[26]
B. Zi, H. Zheng, T. Zhou, Y. Zhang, Q. Lu, M. Chen, H. Sun, B. Xiao, Z. Qiu, J. Zhao, et al., J. Colloid Interface Sci. 680(2024) 298, https://doi.org/10.1016/j.jcis.2024.11.018.
-
[27]
F. Shao, X. Zhu, A. Wang, K. Fang, J. Yuan, J. Feng, J. Colloid Interface Sci. 505(2017) 307, https://doi.org/10.1016/j.jcis.2017.05.088.
-
[28]
G. Wu, W. Xu, H. Zuo, X. Wei, J. Cao, Comput. Mater. Sci. 228(2023) 112328, https://doi.org/10.1016/j.commatsci.2023.112328
-
[29]
K. Wang, M. Wang, J. Yu, D. Liao, H. Shi, X. Wang, H. Yu, ACS Appl. Nano Mater. 4(2021) 13158, https://doi.org/10.1021/acsanm.1c02688.
-
[30]
Y. Lin, C. Lu, C. Wei, J. Alloys Compd. 781(2019) 56, https://doi.org/10.1016/j.jallcom.2018.12.071.
-
[31]
Y. Zhang, H. Gong, Y. Zhang, K. Liu, H. Cao, H. Yan, J. Zhu, Eur. J. Inorg. Chem. 2017(2017) 2990, https://doi.org/10.1002/ejic.201700165.
-
[32]
G. Che, D. Wang, C. Wang, F. Yu, D. Li, N. Suzuki, C. Terashima, A. Fujishima, Y. Liu, X. Zhang, Chem. Eng. J. 397(2020) 125381, https://doi.org/10.1016/j.cej.2020.125381.
-
[33]
S. Heckel, M. Wittmann, M. Reid, K. Villa, J. Simmchen, Acc. Mater. Res. 5(2024) 400, https://doi.org/10.1021/accountsmr.3c00021.
-
[34]
H. Lv, Y. Liu, J. Zhou, Y. Bai, H. Shi, B. Yue, S. Shen, D. Yu, Chem. Eng. J. 484(2024) 149514, https://doi.org/10.1016/j.cej.2024.149514.
-
[35]
G. Yentür, M. Dükkancı, Appl. Surf. Sci. 531(2020) 147322, https://doi.org/10.1016/j.apsusc.2020.147322.
-
[36]
Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal., B. 333(2023) 122780, https://doi.org/10.1016/j.apcatb.2023.122780.
-
[37]
L. Wang, J. Sun, B. Cheng, R. He, J. Yu, J. Phys. Chem. Lett. 14(2023) 4803, https://doi.org/10.1021/acs.jpclett.3c00811.
-
[38]
K. Niu, J. Park, H. Zheng, A. Alivisatos, Nano Lett. 13(2013) 5715, https://doi.org/10.1021/nl4035362.
-
[39]
He, W.; Wu, X.; Liu, J.; Hu, X.; Zhang, K.; Hou, S.; Zhou, W.; Xie, S. Chem. Mater. 22(2010) 2988, https://doi.org/10.1021/cm100393v.
-
[40]
S. Lin, M. Habib, S. Burse, R. Mandavkar, M. Joni, S. Kunwar, J. Lee, J. Alloys Compd. 952(2023) 169952, https://doi.org/10.1016/j.jallcom.2023.169952.
-
[41]
Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53(2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0.
-
[42]
R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138(2023) 256, https://doi.org/10.1016/j.jmst.2022.09.002.
-
[43]
H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166(2023) 241. https://doi.org/10.1016/j.jmst.2023.05.030.
-
[44]
D. Gao, W. Zhong, X. Zhang, P. Wang, H. Yu, Small 20(2023) 2309123, https://doi.org/10.1002/smll.202309123.
-
[45]
B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162(2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054.
-
[46]
Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 162(2023) 1, https://doi.org/10.1016/j.jmst.2023.03.045.
-
[47]
B. He, Z. Wang, P. Xiao, T. Chen, J. Yu, L. Zhang, Adv. Mater. 34(2022) 2203225, https://doi.org/10.1002/adma.202203225.
-
[48]
Z. Jiang, Y. Zhang, L. Zhang, B. Cheng, L. Wang, Chin. J. Catal. 43(2022) 226, https://doi.org/10.1016/S1872-2067(21)63832-9.
-
[49]
G. Han, F. Xu, B. Cheng, Y. Li, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 38(2022) 2112037, https://doi.org/10.3866/PKU.WHXB202112037.
-
[50]
Z. Jiang, B. Cheng, Y. Zhang, S. Wageh, Ahmed A. Al‐Ghamdi, J. Yu, L. Wang, J. Mater. Sci. Technol. 124(2022) 193, https://doi.org/10.1016/j.jmst.2022.01.029.
-
[51]
Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11(2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.
-
[52]
K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K Wang, Sci. China Mater. 67(2024) 484, https://doi.org/10.1007/s40843-023-2717-0.
-
[53]
X. Yin, D. Gao, J. Xu, B. Zhao, X. Wang, J. Yu, H. Yu, J. Colloid Interface Sci. 678(2025) 1249, https://doi.org/10.1016/j.jcis.2024.09.195.
-
[54]
S. Wu, X. Wang, H. Yu, Chin. J. Struct. Chem. 43(2024) 100457, https://doi.org/10.1016/j.cjsc.2024.100457.
-
[55]
G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61(2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8.
-
[56]
X. Cao, Y. Han, C. Gao, X. Huang, Y. Xu, N. Wang, J. Mater. Chem. A, 1(2013) 14904, https://doi.org/10.1039/C3TA13071A.
-
[57]
Y. Zhao, S. Zhang, Z. Wu, B Zhu, G. Sun, J. Zhang, Chin. J. Catal. 60(2024) 219, https://doi.org/10.1016/S1872-2067(23)64645-5.
-
[58]
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12(2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.
-
[59]
H. Phuoc Toan, D. Nguyen,P. Minh Phan, N. Anh, P. Phuong Ly, M. Pham, S. Hyun Hur, T. Thi Ung, D. Danh Bich, M. Chien Nguyen, et al., ACS Appl. Mater. Interfaces 16(2024) 29421, https://doi.org/10.1021/acsami.4c04387.
-
[60]
H. Sun, D. Li, Y. Min, Y. Wang, Y. Ma, Y. Zheng, H. Huang, Acta Phys. Chim. Sin. 40(2024) 2307007, https://doi.org/10.3866/PKU.WHXB202307007.
-
[61]
J. Yang, T. Shao, C. Luo, J. Li, S. He, B. Meng, Q. Zhang, D. Zhang, Z. Xue, X. Zhou, J. Alloys Compd. 834(2020) 155056, https://doi.org/10.1016/j.jallcom.2020.155056.
-
[62]
R. Bariki, S. Pradhan, S. Panda, S. Nayak, A. Pati, B. Mishra, Langmuir 39(2023) 7707, https://doi.org/10.1021/acs.langmuir.3c00519.
-
[63]
M. Song, M. Chen, C. Zhang, J. Zhang, W. Liu, X. Huang, J. Li, G. Feng, D. Wang, ACS Appl. Mater. Interfaces 15(2023) 31375, https://doi.org/10.1021/acsami.3c02793.
-
[64]
B. Zhao, W. Zhong, F. Chen, P. Wang, C. Bie, H. Yu, Chin. J. Catal. 52(2023) 127, https://doi.org/10.1016/S1872-2067(23)64491-2.
-
[65]
Y. Ko, K. Choi, B. Yang, W. Lee, J. Kim, J. Choi, K. Chae, J. Lee, Y. Hwang, B. Min, et al., J. Mater. Chem. A 8(2020) 9859, https://doi.org/10.1039/D0TA01869D.
-
[66]
N. Wilson, Y. Pan, Y. Shao, J. Zuo, H. Yang, D. Flaherty, ACS Catal. 8(2018) 2880, https://doi.org/10.1021/acscatal.7b04186.
-
[67]
X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. Chim. Sin. 40(2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007.
-
[68]
J. Xu, W. Zhong, D. Gao, X. Wang, P. Wang, H. Yu, Chem. Eng. J. 439(2022) 135758, https://doi.org/10.1016/j.cej.2022.135758.
-
[69]
K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. Chim. Sin. 40(2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.
-
[1]
-
-
-
[1]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[2]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[3]
Sikai Wu , Xuefei Wang , Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457
-
[4]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[5]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[6]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[9]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[10]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[11]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[12]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[13]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
-
[14]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[15]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[16]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[17]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[18]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[19]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[20]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(84)
- HTML views(12)