Citation: Haiyu Zhu, Zhuoqun Wen, Wen Xiong, Xingzhan Wei, Zhi Wang. 二维半金属/硅异质结中肖特基势垒高度的准确高效预测[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100078. doi: 10.1016/j.actphy.2025.100078 shu

二维半金属/硅异质结中肖特基势垒高度的准确高效预测

  • Corresponding author: Wen Xiong, xiongwen@cigit.ac.cn Xingzhan Wei, weixingzhan@cigit.ac.cn Zhi Wang, wangzhi@semi.ac.cn
  • Received Date: 17 January 2025
    Revised Date: 2 March 2025
    Accepted Date: 4 March 2025

    Fund Project: the National Natural Science Foundation of China 12174380the National Natural Science Foundation of China 11904359the National Natural Science Foundation of China 62074021the Natural Science Foundation of Chongqing, China CSTB2023NSCQ-LZX0087the Natural Science Foundation Project of CQ CSTC, China cstc2020jcyj-msxmX0822

  • 肖特基势垒高度(SBH)的准确预测对优化半金属/半导体异质结器件的性能至关重要。目前,二维半金属/半导体异质结构已在实验上得到广泛研究。然而,基于第一性原理的SBH预测通常需要在包含超过103个原子的超胞中求解从头算哈密顿量。计算复杂度的增加不仅导致效率极低,还限制了异质结器件的设计和优化。本研究采用密度泛函理论结合核心能级对准方法,将过渡金属二碲化物半金属/硅异质结的超胞尺寸减少了一个数量级,计算得到的SBH与实验结果一致。进一步研究了多种二维半金属化合物,结果表明候选材料的空穴SBH均低于电子SBH,此外,厚度效应在三到五层后变得可以忽略不计。本研究为复杂异质结构中SBH计算提供一种高效的计算框架,能够为高性能二维半金属异质结器件的优化设计提供理论依据。
  • 加载中
    1. [1]

      Chang, C. C.; Sharma, Y. D.; Kim, Y. S.; Bur, J. A.; Shenoi, R. V.; Krishna, S.; Huang, D.; Lin, S. Y. Nano. Lett. 2010, 10, 1704. doi: 10.1021/nl100081j  doi: 10.1021/nl100081j

    2. [2]

      Tan, C. L.; Mohseni, H. Nanophotonics 2018, 7, 169. doi: 10.1515/nanoph-2017-0061  doi: 10.1515/nanoph-2017-0061

    3. [3]

      Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Nanoscale 2020, 12, 3535. doi: 10.1039/c9nr10178k  doi: 10.1039/c9nr10178k

    4. [4]

      Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Light Sci. Appl. 2021, 10, 123. doi: 10.1038/s41377-021-00551-4  doi: 10.1038/s41377-021-00551-4

    5. [5]

      Zhang, K. X.; Zhang, L. B.; Han, L.; Wang, L.; Chen, Z. Q. Z.; Xing, H. Z.; Chen, X. S. Nano Ex. 2021, 2, 012001. doi: 10.1088/2632-959X/abd45b  doi: 10.1088/2632-959X/abd45b

    6. [6]

      Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Adv. Funct. Mater. 2018, 29, 1803807. doi: 10.1002/adfm.201803807  doi: 10.1002/adfm.201803807

    7. [7]

      Zha, J. J.; Luo, M. C.; Ye, M.; Ahmed, T.; Yu, X. C.; Lien, D. H.; He, Q. Y.; Lei, D. Y.; Ho, J. C.; Bullock, J.; et al. Adv. Funct. Mater. 2021, 32, 2111970. doi: 10.1002/adfm.202111970  doi: 10.1002/adfm.202111970

    8. [8]

      Jiang, H.; Wang, M.; Fu, J.; Li, Z.; Shaikh, M. S.; Li, Y.; Nie, C.; Sun, F.; Tang, L.; Yang, J.; et al. ACS Nano 2022, 16, 12777. doi: 10.1021/acsnano.2c04704  doi: 10.1021/acsnano.2c04704

    9. [9]

      Jiang, H.; Wei, J.; Sun, F.; Nie, C.; Fu, J.; Shi, H.; Sun, J.; Wei, X.; Qiu, C. W. ACS Nano 2022, 16, 4458. doi: 10.1021/acsnano.1c10795  doi: 10.1021/acsnano.1c10795

    10. [10]

      Fu, J.; Guo, Z.; Nie, C.; Sun, F.; Li, G.; Feng, S.; Wei, X. Innovation 2024, 5, 100600. doi: 10.1016/j.xinn.2024.100600  doi: 10.1016/j.xinn.2024.100600

    11. [11]

      Xie, C.; Zeng, L.; Zhang, Z.; Tsang, Y. H.; Luo, L.; Lee, J. H. Nanoscale 2018, 10, 15285. doi: 10.1039/c8nr04004d  doi: 10.1039/c8nr04004d

    12. [12]

      Wu, Y.; Nie, C.; Sun, F.; Jiang, X.; Zhang, X.; Fu, J.; Peng, Y.; Wei, X. ACS Appl. Mater. Interfaces 2024, 16, 22632. doi: 10.1021/acsami.4c00827  doi: 10.1021/acsami.4c00827

    13. [13]

      Chen, B.; Xu, S.; Cheng, R.; Zhao, Y. IEEE Electron Device Lett. 2019, 40, 632. doi: 10.1109/led.2019.2897817  doi: 10.1109/led.2019.2897817

    14. [14]

      Huang, Z. W.; Yu, C. Y.; Chang, A. L.; Zhao, Y. M.; Huang, W.; Chen, S. Y.; Li, C. J. Mater. Sci. 2020, 55, 8630. doi: 10.1007/s10853-020-04625-3  doi: 10.1007/s10853-020-04625-3

    15. [15]

      Tersoff, J. Phys. Rev. B 1984, 30, 4874. doi: 10.1103/PhysRevB.30.4874  doi: 10.1103/PhysRevB.30.4874

    16. [16]

      Tersoff, J. Phys. Rev. B 1985, 32, 6968. doi: 10.1103/physrevb.32.6968  doi: 10.1103/physrevb.32.6968

    17. [17]

      Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; Van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Adv. Mater. 2014, 26, 2096. doi: 10.1002/adma.201304783  doi: 10.1002/adma.201304783

    18. [18]

      Van, B. R.; Yao, Q.; Banerjee, S.; Cakir, D.; Oncel, N.; Zandvliet, H. J. W. Beilstein J. Nanotechnol 2017, 8, 1952. doi: 10.3762/bjnano.8.196  doi: 10.3762/bjnano.8.196

    19. [19]

      Zhou, S. R.; Wen, S. F.; Fan, H. D.; Wei, Y. Y.; Yin, Y.; Lan, C. Y.; Li, C.; Liu, Y. ACS Photonics 2024, 11, 1810. doi: 10.1021/acsphotonics.4c00331  doi: 10.1021/acsphotonics.4c00331

    20. [20]

      Choi, H.; Min, K. A.; Cha, J.; Hong, S. Phys. Chem. Chem. Phys. 2018, 20, 25240. doi: 10.1039/c8cp05201h  doi: 10.1039/c8cp05201h

    21. [21]

      Fang, P. X. W.; Nihtianov, S.; Sberna, P.; De Wijs, G. A.; Fang, C. M. J. Phys. Commun. 2022, 6, 085010. doi: 10.1088/2399-6528/ac8854  doi: 10.1088/2399-6528/ac8854

    22. [22]

      Mott, N. F. Proc. R. Soc. (London) A 1939, 171, 27. doi: 10.1098/rspa.1939.0051  doi: 10.1098/rspa.1939.0051

    23. [23]

      Schottky, W. Z. Phys. 1939, 113, 367. doi: 10.1007/BF01340116  doi: 10.1007/BF01340116

    24. [24]

      Bardeen, J. Phys. Rev. 1947, 71, 717. doi: 10.1103/PhysRev.71.717  doi: 10.1103/PhysRev.71.717

    25. [25]

      Skachkov, D.; Liu, S. L.; Wang, Y.; Zhang, X. G.; Cheng H. P. Phys. Rev. B 2021, 104, 045429. doi: 10.1103/PhysRevB.104.045429  doi: 10.1103/PhysRevB.104.045429

    26. [26]

      Nangoi, J. K.; Palmstrom, C. J.; Van de Walle, C. G. Phys. Rev. B 2024, 110, 035302. doi: 10.1103/PhysRevB.110.035302  doi: 10.1103/PhysRevB.110.035302

    27. [27]

      Chin, K. K.; Cao, R.; Kendelewicz, T.; Miyano, K.; Williams, M. D.; Doniach, S.; Lindau, I.; Spicer, W. E. MRS Online Proc. Libr. 1986, 77, 297. doi: 10.1557/PROC-77-297  doi: 10.1557/PROC-77-297

    28. [28]

      Kim, H.; Kumar, M. D.; Kim, J. Sensor Actuat A-phys 2015, 233, 290. doi: 10.1016/j.sna.2015.07.026  doi: 10.1016/j.sna.2015.07.026

    29. [29]

      Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. Sensors 2021, 21, 2758. doi: 10.3390/s21082758  doi: 10.3390/s21082758

    30. [30]

      Wei, S. H.; Alex, Z. Appl. Phys. Lett. 1998, 72, 2011. doi: 10.1063/1.121249  doi: 10.1063/1.121249

    31. [31]

      Li, Y. H.; Walsh, A.; Chen, S. Y.; Yin, W. J.; Yang, J. H.; Li, J. B.; Da Silva, J. L. F.; Gong X. G.; Wei, S. H. Appl. Phys. Lett. 2009, 94, 212109. doi: 10.1063/1.3143626  doi: 10.1063/1.3143626

    32. [32]

      Lang, L.; Zhang, Y. Y.; Xu, P.; Chen, S. Y.; Xiang, H. J.; Gong, X. G. Phys. Rev. B 2015, 92, 075102. doi: 10.1103/PhysRevB.92.075102  doi: 10.1103/PhysRevB.92.075102

    33. [33]

      Hu, Y. Y; Qiu, C.; Shen, T.; Yang, K. K.; Deng, H. X. J. Semicond. 2021, 42, 112102. doi: 10.1088/1674-4926/42/11/112102  doi: 10.1088/1674-4926/42/11/112102

    34. [34]

      Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256(96)00008-0

    35. [35]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169  doi: 10.1103/PhysRevB.54.11169

    36. [36]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758  doi: 10.1103/PhysRevB.59.1758

    37. [37]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    38. [38]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060  doi: 10.1063/1.1564060

    39. [39]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2006, 124, 219906. doi: 10.1063/1.2204597  doi: 10.1063/1.2204597

    40. [40]

      Leendertz, C.; Mingirulli, N.; Schulze, T. F.; Kleider, J. P.; Rech, B.; Korte, L. Appl. Phys. Lett. 2011, 98, 2002108. doi: 10.1063/1.3590254  doi: 10.1063/1.3590254

    41. [41]

      Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Adv. Mater. 2020, 32, 2004412. doi: 10.1002/adma.202004412  doi: 10.1002/adma.202004412

    42. [42]

      Wei, S. H.; Zunger, A. Phys. Rev. B 1999, 60, 5404. doi: 10.1103/PhysRevB.60.5404  doi: 10.1103/PhysRevB.60.5404

    43. [43]

      Li, Y. H.; Gong X. G.; Wei, S. H. Appl. Phys. Lett. 2006, 88, 042104. doi: 10.1063/1.2168254  doi: 10.1063/1.2168254

    44. [44]

      Zhang, L.; Zhu, X. D.; Ling, L. S.; Zhang, C. J.; Pi, L.; Zhang, Y. H. Philos. Mag. 2013, 94, 439. doi: 10.1080/14786435.2013.855333  doi: 10.1080/14786435.2013.855333

    45. [45]

      Qi, M. Y.; An, C.; Zhou, Y. H.; Wu, H.; Zhang, B. W.; Chen, C. H.; Yuan, Y. F.; Wang, S. Y.; Zhou, Y.; Chen, X. L.; et al. Phys. Rev. B 2020, 101, 115124. doi: 10.1103/PhysRevB.101.115124  doi: 10.1103/PhysRevB.101.115124

    46. [46]

      Noh, H. J.; Jeong, J.; Cho, E. J.; Kim, K.; Min, B. I.; Park, B. G. Phys. Rev. Lett. 2017, 119, 016401. doi: 10.1103/PhysRevLett.119.016401  doi: 10.1103/PhysRevLett.119.016401

    47. [47]

      Ma, H. F.; Chen, P.; Li, B.; Li, J.; Ai, R. Q.; Zhang, Z. W.; Sun, G. Z.; Yao K. K.; Lin, Z. Y.; Zhao, B.; et al. Nano Lett. 2018, 18, 3523. doi: 10.1021/acs.nanolett.8b00583  doi: 10.1021/acs.nanolett.8b00583

    48. [48]

      Zahir, M.; Muhammad, Z.; Sami, U.; Zhang, B.; Lu, Q. X.; Zhu, L.; Hu, R. Inorg. Chem. Front. 2021, 8, 3885. doi: 10.1039/d1qi00553g  doi: 10.1039/d1qi00553g

    49. [49]

      Li, P. F.; Li, L.; Zeng, X. C. J. Mater. Chem. C 2016, 4, 3106. doi: 10.1039/c6tc00130k  doi: 10.1039/c6tc00130k

    50. [50]

      Yu, M.; Trinkle, D. R. J. Chem. Phys. 2011, 134, 064111. doi: 10.1063/1.3553716  doi: 10.1063/1.3553716

    51. [51]

      Jan, G.; McMillan, P. F.; Marzke, R. F.; Ramachandran, G. K.; Patton, D.; Deb, S. K.; Sankey, O. F. Phys. Rev. B 2000, 62, R7707. doi: 10.1103/PhysRevB.62.R7707  doi: 10.1103/PhysRevB.62.R7707

    52. [52]

      Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. NPJ 2D Mater. Appl. 2019, 3, 2. doi: 10.1038/s41699-018-0085-z  doi: 10.1038/s41699-018-0085-z

    53. [53]

      Yan, M.; Huang, H.; Zhang, K.; Wang, E.; Yao, W.; Deng, K.; Wan, G.; Zhang, H.; Arita, M.; Yang, H.; et al. Nat. Commun. 2017, 8, 257. doi: 10.1038/s41467-017-00280-6  doi: 10.1038/s41467-017-00280-6

  • 加载中
    1. [1]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    5. [5]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    6. [6]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    10. [10]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    11. [11]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Xinming NieXinhe Wu . Schottky/S-scheme composite heterojunctions for efficient CO2 photoreduction. Acta Physico-Chimica Sinica, 2026, 42(3): 100192-0. doi: 10.1016/j.actphy.2025.100192

    14. [14]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(5)
  • Abstract views(902)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return