
Citation: Haiyu Zhu, Zhuoqun Wen, Wen Xiong, Xingzhan Wei, Zhi Wang. Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions[J]. Acta Physico-Chimica Sinica, 2025, 41(7): 100078. doi: 10.1016/j.actphy.2025.100078

二维半金属/硅异质结中肖特基势垒高度的准确高效预测
English
Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions
-
-
[1]
Chang, C. C.; Sharma, Y. D.; Kim, Y. S.; Bur, J. A.; Shenoi, R. V.; Krishna, S.; Huang, D.; Lin, S. Y. Nano. Lett. 2010, 10, 1704. doi: 10.1021/nl100081jChang, C. C.; Sharma, Y. D.; Kim, Y. S.; Bur, J. A.; Shenoi, R. V.; Krishna, S.; Huang, D.; Lin, S. Y. Nano. Lett. 2010, 10, 1704. doi: 10.1021/nl100081j
-
[2]
Tan, C. L.; Mohseni, H. Nanophotonics 2018, 7, 169. doi: 10.1515/nanoph-2017-0061Tan, C. L.; Mohseni, H. Nanophotonics 2018, 7, 169. doi: 10.1515/nanoph-2017-0061
-
[3]
Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Nanoscale 2020, 12, 3535. doi: 10.1039/c9nr10178kTyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Nanoscale 2020, 12, 3535. doi: 10.1039/c9nr10178k
-
[4]
Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Light Sci. Appl. 2021, 10, 123. doi: 10.1038/s41377-021-00551-4Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Light Sci. Appl. 2021, 10, 123. doi: 10.1038/s41377-021-00551-4
-
[5]
Zhang, K. X.; Zhang, L. B.; Han, L.; Wang, L.; Chen, Z. Q. Z.; Xing, H. Z.; Chen, X. S. Nano Ex. 2021, 2, 012001. doi: 10.1088/2632-959X/abd45bZhang, K. X.; Zhang, L. B.; Han, L.; Wang, L.; Chen, Z. Q. Z.; Xing, H. Z.; Chen, X. S. Nano Ex. 2021, 2, 012001. doi: 10.1088/2632-959X/abd45b
-
[6]
Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Adv. Funct. Mater. 2018, 29, 1803807. doi: 10.1002/adfm.201803807Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Adv. Funct. Mater. 2018, 29, 1803807. doi: 10.1002/adfm.201803807
-
[7]
Zha, J. J.; Luo, M. C.; Ye, M.; Ahmed, T.; Yu, X. C.; Lien, D. H.; He, Q. Y.; Lei, D. Y.; Ho, J. C.; Bullock, J.; et al. Adv. Funct. Mater. 2021, 32, 2111970. doi: 10.1002/adfm.202111970Zha, J. J.; Luo, M. C.; Ye, M.; Ahmed, T.; Yu, X. C.; Lien, D. H.; He, Q. Y.; Lei, D. Y.; Ho, J. C.; Bullock, J.; et al. Adv. Funct. Mater. 2021, 32, 2111970. doi: 10.1002/adfm.202111970
-
[8]
Jiang, H.; Wang, M.; Fu, J.; Li, Z.; Shaikh, M. S.; Li, Y.; Nie, C.; Sun, F.; Tang, L.; Yang, J.; et al. ACS Nano 2022, 16, 12777. doi: 10.1021/acsnano.2c04704Jiang, H.; Wang, M.; Fu, J.; Li, Z.; Shaikh, M. S.; Li, Y.; Nie, C.; Sun, F.; Tang, L.; Yang, J.; et al. ACS Nano 2022, 16, 12777. doi: 10.1021/acsnano.2c04704
-
[9]
Jiang, H.; Wei, J.; Sun, F.; Nie, C.; Fu, J.; Shi, H.; Sun, J.; Wei, X.; Qiu, C. W. ACS Nano 2022, 16, 4458. doi: 10.1021/acsnano.1c10795Jiang, H.; Wei, J.; Sun, F.; Nie, C.; Fu, J.; Shi, H.; Sun, J.; Wei, X.; Qiu, C. W. ACS Nano 2022, 16, 4458. doi: 10.1021/acsnano.1c10795
-
[10]
Fu, J.; Guo, Z.; Nie, C.; Sun, F.; Li, G.; Feng, S.; Wei, X. Innovation 2024, 5, 100600. doi: 10.1016/j.xinn.2024.100600Fu, J.; Guo, Z.; Nie, C.; Sun, F.; Li, G.; Feng, S.; Wei, X. Innovation 2024, 5, 100600. doi: 10.1016/j.xinn.2024.100600
-
[11]
Xie, C.; Zeng, L.; Zhang, Z.; Tsang, Y. H.; Luo, L.; Lee, J. H. Nanoscale 2018, 10, 15285. doi: 10.1039/c8nr04004dXie, C.; Zeng, L.; Zhang, Z.; Tsang, Y. H.; Luo, L.; Lee, J. H. Nanoscale 2018, 10, 15285. doi: 10.1039/c8nr04004d
-
[12]
Wu, Y.; Nie, C.; Sun, F.; Jiang, X.; Zhang, X.; Fu, J.; Peng, Y.; Wei, X. ACS Appl. Mater. Interfaces 2024, 16, 22632. doi: 10.1021/acsami.4c00827Wu, Y.; Nie, C.; Sun, F.; Jiang, X.; Zhang, X.; Fu, J.; Peng, Y.; Wei, X. ACS Appl. Mater. Interfaces 2024, 16, 22632. doi: 10.1021/acsami.4c00827
-
[13]
Chen, B.; Xu, S.; Cheng, R.; Zhao, Y. IEEE Electron Device Lett. 2019, 40, 632. doi: 10.1109/led.2019.2897817Chen, B.; Xu, S.; Cheng, R.; Zhao, Y. IEEE Electron Device Lett. 2019, 40, 632. doi: 10.1109/led.2019.2897817
-
[14]
Huang, Z. W.; Yu, C. Y.; Chang, A. L.; Zhao, Y. M.; Huang, W.; Chen, S. Y.; Li, C. J. Mater. Sci. 2020, 55, 8630. doi: 10.1007/s10853-020-04625-3Huang, Z. W.; Yu, C. Y.; Chang, A. L.; Zhao, Y. M.; Huang, W.; Chen, S. Y.; Li, C. J. Mater. Sci. 2020, 55, 8630. doi: 10.1007/s10853-020-04625-3
-
[15]
Tersoff, J. Phys. Rev. B 1984, 30, 4874. doi: 10.1103/PhysRevB.30.4874Tersoff, J. Phys. Rev. B 1984, 30, 4874. doi: 10.1103/PhysRevB.30.4874
-
[16]
Tersoff, J. Phys. Rev. B 1985, 32, 6968. doi: 10.1103/physrevb.32.6968Tersoff, J. Phys. Rev. B 1985, 32, 6968. doi: 10.1103/physrevb.32.6968
-
[17]
Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; Van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Adv. Mater. 2014, 26, 2096. doi: 10.1002/adma.201304783Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; Van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Adv. Mater. 2014, 26, 2096. doi: 10.1002/adma.201304783
-
[18]
Van, B. R.; Yao, Q.; Banerjee, S.; Cakir, D.; Oncel, N.; Zandvliet, H. J. W. Beilstein J. Nanotechnol 2017, 8, 1952. doi: 10.3762/bjnano.8.196Van, B. R.; Yao, Q.; Banerjee, S.; Cakir, D.; Oncel, N.; Zandvliet, H. J. W. Beilstein J. Nanotechnol 2017, 8, 1952. doi: 10.3762/bjnano.8.196
-
[19]
Zhou, S. R.; Wen, S. F.; Fan, H. D.; Wei, Y. Y.; Yin, Y.; Lan, C. Y.; Li, C.; Liu, Y. ACS Photonics 2024, 11, 1810. doi: 10.1021/acsphotonics.4c00331Zhou, S. R.; Wen, S. F.; Fan, H. D.; Wei, Y. Y.; Yin, Y.; Lan, C. Y.; Li, C.; Liu, Y. ACS Photonics 2024, 11, 1810. doi: 10.1021/acsphotonics.4c00331
-
[20]
Choi, H.; Min, K. A.; Cha, J.; Hong, S. Phys. Chem. Chem. Phys. 2018, 20, 25240. doi: 10.1039/c8cp05201hChoi, H.; Min, K. A.; Cha, J.; Hong, S. Phys. Chem. Chem. Phys. 2018, 20, 25240. doi: 10.1039/c8cp05201h
-
[21]
Fang, P. X. W.; Nihtianov, S.; Sberna, P.; De Wijs, G. A.; Fang, C. M. J. Phys. Commun. 2022, 6, 085010. doi: 10.1088/2399-6528/ac8854Fang, P. X. W.; Nihtianov, S.; Sberna, P.; De Wijs, G. A.; Fang, C. M. J. Phys. Commun. 2022, 6, 085010. doi: 10.1088/2399-6528/ac8854
-
[22]
Mott, N. F. Proc. R. Soc. (London) A 1939, 171, 27. doi: 10.1098/rspa.1939.0051Mott, N. F. Proc. R. Soc. (London) A 1939, 171, 27. doi: 10.1098/rspa.1939.0051
-
[23]
Schottky, W. Z. Phys. 1939, 113, 367. doi: 10.1007/BF01340116Schottky, W. Z. Phys. 1939, 113, 367. doi: 10.1007/BF01340116
-
[24]
Bardeen, J. Phys. Rev. 1947, 71, 717. doi: 10.1103/PhysRev.71.717Bardeen, J. Phys. Rev. 1947, 71, 717. doi: 10.1103/PhysRev.71.717
-
[25]
Skachkov, D.; Liu, S. L.; Wang, Y.; Zhang, X. G.; Cheng H. P. Phys. Rev. B 2021, 104, 045429. doi: 10.1103/PhysRevB.104.045429Skachkov, D.; Liu, S. L.; Wang, Y.; Zhang, X. G.; Cheng H. P. Phys. Rev. B 2021, 104, 045429. doi: 10.1103/PhysRevB.104.045429
-
[26]
Nangoi, J. K.; Palmstrom, C. J.; Van de Walle, C. G. Phys. Rev. B 2024, 110, 035302. doi: 10.1103/PhysRevB.110.035302Nangoi, J. K.; Palmstrom, C. J.; Van de Walle, C. G. Phys. Rev. B 2024, 110, 035302. doi: 10.1103/PhysRevB.110.035302
-
[27]
Chin, K. K.; Cao, R.; Kendelewicz, T.; Miyano, K.; Williams, M. D.; Doniach, S.; Lindau, I.; Spicer, W. E. MRS Online Proc. Libr. 1986, 77, 297. doi: 10.1557/PROC-77-297Chin, K. K.; Cao, R.; Kendelewicz, T.; Miyano, K.; Williams, M. D.; Doniach, S.; Lindau, I.; Spicer, W. E. MRS Online Proc. Libr. 1986, 77, 297. doi: 10.1557/PROC-77-297
-
[28]
Kim, H.; Kumar, M. D.; Kim, J. Sensor Actuat A-phys 2015, 233, 290. doi: 10.1016/j.sna.2015.07.026Kim, H.; Kumar, M. D.; Kim, J. Sensor Actuat A-phys 2015, 233, 290. doi: 10.1016/j.sna.2015.07.026
-
[29]
Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. Sensors 2021, 21, 2758. doi: 10.3390/s21082758Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. Sensors 2021, 21, 2758. doi: 10.3390/s21082758
-
[30]
Wei, S. H.; Alex, Z. Appl. Phys. Lett. 1998, 72, 2011. doi: 10.1063/1.121249Wei, S. H.; Alex, Z. Appl. Phys. Lett. 1998, 72, 2011. doi: 10.1063/1.121249
-
[31]
Li, Y. H.; Walsh, A.; Chen, S. Y.; Yin, W. J.; Yang, J. H.; Li, J. B.; Da Silva, J. L. F.; Gong X. G.; Wei, S. H. Appl. Phys. Lett. 2009, 94, 212109. doi: 10.1063/1.3143626Li, Y. H.; Walsh, A.; Chen, S. Y.; Yin, W. J.; Yang, J. H.; Li, J. B.; Da Silva, J. L. F.; Gong X. G.; Wei, S. H. Appl. Phys. Lett. 2009, 94, 212109. doi: 10.1063/1.3143626
-
[32]
Lang, L.; Zhang, Y. Y.; Xu, P.; Chen, S. Y.; Xiang, H. J.; Gong, X. G. Phys. Rev. B 2015, 92, 075102. doi: 10.1103/PhysRevB.92.075102Lang, L.; Zhang, Y. Y.; Xu, P.; Chen, S. Y.; Xiang, H. J.; Gong, X. G. Phys. Rev. B 2015, 92, 075102. doi: 10.1103/PhysRevB.92.075102
-
[33]
Hu, Y. Y; Qiu, C.; Shen, T.; Yang, K. K.; Deng, H. X. J. Semicond. 2021, 42, 112102. doi: 10.1088/1674-4926/42/11/112102Hu, Y. Y; Qiu, C.; Shen, T.; Yang, K. K.; Deng, H. X. J. Semicond. 2021, 42, 112102. doi: 10.1088/1674-4926/42/11/112102
-
[34]
Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[35]
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
-
[36]
Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
-
[37]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
-
[38]
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060
-
[39]
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2006, 124, 219906. doi: 10.1063/1.2204597Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2006, 124, 219906. doi: 10.1063/1.2204597
-
[40]
Leendertz, C.; Mingirulli, N.; Schulze, T. F.; Kleider, J. P.; Rech, B.; Korte, L. Appl. Phys. Lett. 2011, 98, 2002108. doi: 10.1063/1.3590254Leendertz, C.; Mingirulli, N.; Schulze, T. F.; Kleider, J. P.; Rech, B.; Korte, L. Appl. Phys. Lett. 2011, 98, 2002108. doi: 10.1063/1.3590254
-
[41]
Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Adv. Mater. 2020, 32, 2004412. doi: 10.1002/adma.202004412Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Adv. Mater. 2020, 32, 2004412. doi: 10.1002/adma.202004412
-
[42]
Wei, S. H.; Zunger, A. Phys. Rev. B 1999, 60, 5404. doi: 10.1103/PhysRevB.60.5404Wei, S. H.; Zunger, A. Phys. Rev. B 1999, 60, 5404. doi: 10.1103/PhysRevB.60.5404
-
[43]
Li, Y. H.; Gong X. G.; Wei, S. H. Appl. Phys. Lett. 2006, 88, 042104. doi: 10.1063/1.2168254Li, Y. H.; Gong X. G.; Wei, S. H. Appl. Phys. Lett. 2006, 88, 042104. doi: 10.1063/1.2168254
-
[44]
Zhang, L.; Zhu, X. D.; Ling, L. S.; Zhang, C. J.; Pi, L.; Zhang, Y. H. Philos. Mag. 2013, 94, 439. doi: 10.1080/14786435.2013.855333Zhang, L.; Zhu, X. D.; Ling, L. S.; Zhang, C. J.; Pi, L.; Zhang, Y. H. Philos. Mag. 2013, 94, 439. doi: 10.1080/14786435.2013.855333
-
[45]
Qi, M. Y.; An, C.; Zhou, Y. H.; Wu, H.; Zhang, B. W.; Chen, C. H.; Yuan, Y. F.; Wang, S. Y.; Zhou, Y.; Chen, X. L.; et al. Phys. Rev. B 2020, 101, 115124. doi: 10.1103/PhysRevB.101.115124Qi, M. Y.; An, C.; Zhou, Y. H.; Wu, H.; Zhang, B. W.; Chen, C. H.; Yuan, Y. F.; Wang, S. Y.; Zhou, Y.; Chen, X. L.; et al. Phys. Rev. B 2020, 101, 115124. doi: 10.1103/PhysRevB.101.115124
-
[46]
Noh, H. J.; Jeong, J.; Cho, E. J.; Kim, K.; Min, B. I.; Park, B. G. Phys. Rev. Lett. 2017, 119, 016401. doi: 10.1103/PhysRevLett.119.016401Noh, H. J.; Jeong, J.; Cho, E. J.; Kim, K.; Min, B. I.; Park, B. G. Phys. Rev. Lett. 2017, 119, 016401. doi: 10.1103/PhysRevLett.119.016401
-
[47]
Ma, H. F.; Chen, P.; Li, B.; Li, J.; Ai, R. Q.; Zhang, Z. W.; Sun, G. Z.; Yao K. K.; Lin, Z. Y.; Zhao, B.; et al. Nano Lett. 2018, 18, 3523. doi: 10.1021/acs.nanolett.8b00583Ma, H. F.; Chen, P.; Li, B.; Li, J.; Ai, R. Q.; Zhang, Z. W.; Sun, G. Z.; Yao K. K.; Lin, Z. Y.; Zhao, B.; et al. Nano Lett. 2018, 18, 3523. doi: 10.1021/acs.nanolett.8b00583
-
[48]
Zahir, M.; Muhammad, Z.; Sami, U.; Zhang, B.; Lu, Q. X.; Zhu, L.; Hu, R. Inorg. Chem. Front. 2021, 8, 3885. doi: 10.1039/d1qi00553gZahir, M.; Muhammad, Z.; Sami, U.; Zhang, B.; Lu, Q. X.; Zhu, L.; Hu, R. Inorg. Chem. Front. 2021, 8, 3885. doi: 10.1039/d1qi00553g
-
[49]
Li, P. F.; Li, L.; Zeng, X. C. J. Mater. Chem. C 2016, 4, 3106. doi: 10.1039/c6tc00130kLi, P. F.; Li, L.; Zeng, X. C. J. Mater. Chem. C 2016, 4, 3106. doi: 10.1039/c6tc00130k
-
[50]
Yu, M.; Trinkle, D. R. J. Chem. Phys. 2011, 134, 064111. doi: 10.1063/1.3553716Yu, M.; Trinkle, D. R. J. Chem. Phys. 2011, 134, 064111. doi: 10.1063/1.3553716
-
[51]
Jan, G.; McMillan, P. F.; Marzke, R. F.; Ramachandran, G. K.; Patton, D.; Deb, S. K.; Sankey, O. F. Phys. Rev. B 2000, 62, R7707. doi: 10.1103/PhysRevB.62.R7707Jan, G.; McMillan, P. F.; Marzke, R. F.; Ramachandran, G. K.; Patton, D.; Deb, S. K.; Sankey, O. F. Phys. Rev. B 2000, 62, R7707. doi: 10.1103/PhysRevB.62.R7707
-
[52]
Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. NPJ 2D Mater. Appl. 2019, 3, 2. doi: 10.1038/s41699-018-0085-zVillaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. NPJ 2D Mater. Appl. 2019, 3, 2. doi: 10.1038/s41699-018-0085-z
-
[53]
Yan, M.; Huang, H.; Zhang, K.; Wang, E.; Yao, W.; Deng, K.; Wan, G.; Zhang, H.; Arita, M.; Yang, H.; et al. Nat. Commun. 2017, 8, 257. doi: 10.1038/s41467-017-00280-6Yan, M.; Huang, H.; Zhang, K.; Wang, E.; Yao, W.; Deng, K.; Wan, G.; Zhang, H.; Arita, M.; Yang, H.; et al. Nat. Commun. 2017, 8, 257. doi: 10.1038/s41467-017-00280-6
-
[1]
-

计量
- PDF下载量: 0
- 文章访问数: 37
- HTML全文浏览量: 14