Citation: Fangxuan Liu, Ziyan Liu, Guowei Zhou, Tingting Gao, Wenyu Liu, Bin Sun. 中空结构光催化剂[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100071. doi: 10.1016/j.actphy.2025.100071 shu

中空结构光催化剂

  • Corresponding author: Guowei Zhou, gwzhou@qlu.edu.cn Bin Sun, binsun@qlu.edu.cn
  • Received Date: 25 January 2025
    Revised Date: 19 February 2025
    Accepted Date: 24 February 2025

    Fund Project: the National Natural Science Foundation of China 52202102the National Natural Science Foundation of China 52472215the National Natural Science Foundation of China 52202007the National Natural Science Foundation of China 51972180Natural Science Foundation of Shandong Province ZR2019BB030Natural Science Foundation of Shandong Province ZR2021QE282Key Research & Development Project of Shandong Province 2024TSGC0222Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province 2021KJ056Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai AMGM2023F13Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai AMGM2021F05Science, Education and Industry Integration Innovation Pilot Project from Qilu University of Technology (Shandong Academy of Sciences) 2024ZDZX13

  • 利用太阳能驱动的光催化技术,有望成为缓解环境和能源压力的可行策略。因此,光催化性能的优异与否取决于光催化剂的合理设计。通过考虑形貌调控、带隙工程、助催化剂修饰以及异质结构建等因素,可以开发出性能优异的光催化剂。基于中空结构光催化剂独特特性的启发,具有中空结构的光催化剂在光催化剂设计中赋予了诸多优势,包括增强光的多重折射和反射、缩短光生载流子的传输距离以及提供丰富的表面反应位点。在此,我们系统地回顾了中空结构光催化剂的最新研究进展,并总结了其几何形貌、内部结构和化学成分的多样性。具体而言,我们重点介绍了中空结构光催化剂的合成策略,包括硬模板法、软模板法和无模板法。此外,还详细总结了一系列中空结构光催化剂,如金属氧化物、金属硫化物、金属有机框架和共价有机框架等。随后,我们概述了中空结构光催化剂在光催化污染物降解、H2生成、H2O2生成、CO2还原和N2固定等领域的潜在应用。同时,深入探讨了中空结构与光催化性能之间的内在关系。最后,我们分析了中空结构光催化剂未来发展方向中的挑战和前景。该综述为更好地设计中空结构光催化剂以满足环境修复和能源转换需求提供了启示。
  • 加载中
    1. [1]

      H. Lin, M. Ma, H. Qi, X. Wang, Z. Xing, A. Alowasheeir, H. Tang, S. Jun, Y. Yamauchi, S. Liu, Prog. Mater. Sci. 151 (2025) 101427, https://doi.org/10.1016/j.pmatsci.2025.101427.  doi: 10.1016/j.pmatsci.2025.101427

    2. [2]

      J. Qin, Y. Dong, X. Lai, B. Su, B. Pan, C. Wang, S. Wang, J. Mater. Sci. Technol. 198 (2024) 176, https://doi.org/10.1016/j.jmst.2024.02.032.  doi: 10.1016/j.jmst.2024.02.032

    3. [3]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. -Chim. Sin. 40 (2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.  doi: 10.3866/PKU.WHXB202310013

    4. [4]

      H. Zhang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 49 (2023) 42, https://doi.org/10.1016/S1872-2067(23)64444-4.  doi: 10.1016/S1872-2067(23)64444-4

    5. [5]

      H. Li, B. Sun, T. Gao, H. Li, Y. Ren, G. Zhou, Chin. J. Catal. 43 (2022) 461, https://doi.org/10.1016/S1872-2067(21)63915-3.  doi: 10.1016/S1872-2067(21)63915-3

    6. [6]

      C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014.  doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Z. Su, J. Zhang, Z. Tan, J. Hu, F. Zhang, R. Duan, L. Yao, B. Han, Y. Zhao, Y. Yang, Green Chem. 25 (2023) 2577, https://doi.org/10.1039/d3gc00337j.  doi: 10.1039/d3gc00337j

    8. [8]

      D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50 (2023) 273, https://doi.org/10.1016/S1872-2067(23)64462-6.  doi: 10.1016/S1872-2067(23)64462-6

    9. [9]

      F. Wang, M. Li, Z. Zhang, Y. Du, Y. Shang, W. Li, Y. Zhu, Y. Wang, Appl. Catal. B Environ. Energy 366 (2025) 125057, https://doi.org/10.1016/j.apcatb.2025.125057.  doi: 10.1016/j.apcatb.2025.125057

    10. [10]

      T. Gao, D. Zhao, S. Yuan, M. Zheng, X. Pu, L. Tang, Z. Lei, Carbon Energy 6 (2024) e596, https://doi.org/10.1002/cey2.596.  doi: 10.1002/cey2.596

    11. [11]

      X. Zhu, H. Zong, C. Viasus Pérez, H. Miao, W. Sun, Z. Yuan, S. Wang, G. Zeng, H. Xu, Z. Jiang, Angew. Chem., Int. Ed. 62 (2023) e202218694, https://doi.org/10.1002/anie.202218694.  doi: 10.1002/anie.202218694

    12. [12]

      Y. Chang, X. Zhao, Z. Jiang, Y. Gao, E. Zhou, S. Zhu, Z. Yuan, H. Pang, Chem. Eng. J. 501 (2024) 157717, https://doi.org/10.1016/j.cej.2024.157717.  doi: 10.1016/j.cej.2024.157717

    13. [13]

      Y. Liu, C. Fernández, S. Varanasi, N. Bui, L. Song, M. Hatzell, ACS Energy Lett. 7 (2021) 24, https://doi.org/10.1021/acsenergylett.1c02260.  doi: 10.1021/acsenergylett.1c02260

    14. [14]

      R. Wu, S. Gao, C. Jones, M. Sun, M. Guo, R. Tai, S. Chen, Q. Wang, Adv. Funct. Mater. 34 (2024) 2314051, https://doi.org/10.1002/adfm.202314051.  doi: 10.1002/adfm.202314051

    15. [15]

      R. Hailili, X. Reyimu, Z. Li, X. Lu, D. Bahnemann, ACS Appl. Mater. Interfaces 15 (2023) 23185, https://doi.org/10.1021/acsami.3c02286.  doi: 10.1021/acsami.3c02286

    16. [16]

      S. Kshirsagar, S. Shelake, B. Biswas, K. Ramesh, R. Gaur, B. Abraham, A. Sainath, U. Pal, Small 20 (2024) 2407318, https://doi.org/10.1002/smll.202407318.  doi: 10.1002/smll.202407318

    17. [17]

      Z. Yuan, X. Zhu, X. Gao, C. An, Z. Wang, C. Zuo, D. Dionysiou, H. He, Z. Jiang, Environ. Sci. Ecotechnology 20 (2024) 100368, https://doi.org/10.1016/j.ese.2023.100368.  doi: 10.1016/j.ese.2023.100368

    18. [18]

      B. Zhang, F. Liu, B. Sun, T. Gao, G. Zhou, Chin. J. Catal. 59 (2024) 334, https://doi.org/10.1016/S1872-2067(23)64633-9.  doi: 10.1016/S1872-2067(23)64633-9

    19. [19]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    20. [20]

      X. Zhang, Z. Zhang, Y. Sun, X. Ma, F. Jin, F. Zhang, W. Han, B. Shen, S. Guo, Rare Met. 43 (2024) 3441, https://doi.org/10.1007/s12598-023-02554-z.  doi: 10.1007/s12598-023-02554-z

    21. [21]

      X. Gao, L. Li, Z. Zhao, Y. Dappe, Z. Jiang, P. Song, Y. Wang, J. Zhu, Appl. Catal. B Environ. Energy 364 (2025) 124835, https://doi.org/10.1016/j.apcatb.2024.124835.  doi: 10.1016/j.apcatb.2024.124835

    22. [22]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou, Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/s1872-2067(24)60099-9.  doi: 10.1016/s1872-2067(24)60099-9

    23. [23]

      Y. Chen, L. Zhang, S. Chen, S. Sun, H. Cheng, S. Li, J. Yu, B. Ding, J. Yan, Adv. Mater. 36 (2024) 2407400, https://doi.org/10.1002/adma.202407400.  doi: 10.1002/adma.202407400

    24. [24]

      Y. Shi, P. Li, H. Chen, Z. Wang, Y. Song, Y. Tang, S. Lin, Z. Yu, L. Wu, J. Yu, et al., Nat. Commun. 15 (2024) 4641, https://doi.org/10.1038/s41467-024-49005-6.  doi: 10.1038/s41467-024-49005-6

    25. [25]

      M. Chen, M. Sun, X. Cao, H. Wang, L. Xia, W. Jiang, M. Huang, L. He, X. Zhao, Y. Zhou, Coord. Chem. Rev. 510 (2024) 215849, https://doi.org/10.1016/j.ccr.2024.215849.  doi: 10.1016/j.ccr.2024.215849

    26. [26]

      Z. Pan, W. Ding, H. Chen, H. Ji, Chin. Chem. Lett. 354 (2024) 108567, https://doi.org/10.1016/j.cclet.2023.108567.  doi: 10.1016/j.cclet.2023.108567

    27. [27]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. -Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.  doi: 10.3866/PKU.WHXB202307045

    28. [28]

      J. Zhao, G. Ren, X. Meng, Nano Energy 130 (2024) 110109, https://doi.org/10.1016/j.nanoen.2024.110109.  doi: 10.1016/j.nanoen.2024.110109

    29. [29]

      K. Wu, S. Li, C. Hu, G. Wen, X. Zeng, M. Wang, J. Wang, M. Chu, H. Shang, M. Ye, et al., Appl. Catal. B Environ. Energy 375 (2024) 124288, https://doi.org/10.1016/j.apcatb.2024.124288.  doi: 10.1016/j.apcatb.2024.124288

    30. [30]

      T. Zhao, X. Wang, Z. Sun, H. Wang, P. Qiu, Q. Xiao, W. Jiang, L. Wang, F. Bu, W. Luo, Adv. Funct. Mater. 33 (2023) 2303644, https://doi.org/10.1002/adfm.202303644.  doi: 10.1002/adfm.202303644

    31. [31]

      R. Zhang, J. Shi, L. Fu, Y. Liu, Y. Jia, Z. Han, K. Yuan, H. Jiang, ACS Nano 18 (2024) 12994, https://doi.org/10.1021/acsnano.4c01318.  doi: 10.1021/acsnano.4c01318

    32. [32]

      G. Zeng, H. Miao, J. Wu, X. Zhu, J. Yi, X. Zhu, H. Qi, Z. Jiang, Z. Mo, J. Liu, et al., Chem. Eng. J. 499 (2024) 156367, https://doi.org/10.1016/j.cej.2024.156367.  doi: 10.1016/j.cej.2024.156367

    33. [33]

      L. Xiao, W. Ren, S. Shen, M. Chen, R. Liao, Y. Zhou, X. Li, Acta Phys. -Chim. Sin. 40 (2024) 2308036, https://doi.org/10.3866/PKU.WHXB202308036.  doi: 10.3866/PKU.WHXB202308036

    34. [34]

      B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, Sci. China Mater. 37 (2024) 424, https://doi.org/10.1007/s40843-023-2754-8.  doi: 10.1007/s40843-023-2754-8

    35. [35]

      H. Zhang, P. Sun, X. Fei, X. Wu, Z. Huang, W. Zhong, Q. Gong, Y. Zheng, Q. Zhang, S. Xie, et al., Nat. Commun. 15 (2024) 4453, https://doi.org/10.1038/s41467-024-48866-1.  doi: 10.1038/s41467-024-48866-1

    36. [36]

      C. Wu, K. Lv, X. Li, Q. Li, Chin. J. Catal. 54 (2023) 137, https://doi.org/10.1016/s1872-2067(23)64542-5.  doi: 10.1016/s1872-2067(23)64542-5

    37. [37]

      Y. Wei, N. Yang, K. Huang, J. Wan, F. You, R. Yu, S. Feng, D. Wang, Adv. Mater. 32 (2020) 2002556, https://doi.org/10.1002/adma.202002556.  doi: 10.1002/adma.202002556

    38. [38]

      P. Hou, D. Li, N. Yang, J. Wan, C. Zhang, X. Zhang, H. Jiang, Q. Zhang, L. Gu, D. Wang, Angew. Chem., Int. Ed. 60 (2021) 6926, https://doi.org/10.1002/anie.202016285.  doi: 10.1002/anie.202016285

    39. [39]

      M. Zhu, J. Tang, W. Wei, S. Li, Mater. Chem. Front. 4 (2020) 1105, https://doi.org/10.1039/c9qm00700h.  doi: 10.1039/c9qm00700h

    40. [40]

      G. Zhao, X. Long, J. Zou, J. Hu, F. Jiao, Coord. Chem. Rev. 477 (2023) 214953, https://doi.org/10.1016/j.ccr.2022.214953.  doi: 10.1016/j.ccr.2022.214953

    41. [41]

      J. Li, X. Wu, S. Liu, Acta Phys. -Chim. Sin. 37 (2021) 2009038, https://doi.org/10.3866/PKU.WHXB202009038.  doi: 10.3866/PKU.WHXB202009038

    42. [42]

      J. Liu, Y. Ma, L. Zhang, Y. Zheng, R. Zhang, L. Zhang, F. Wei, Z. Qiao, Nano Res. 14 (2021) 3260, https://doi.org/10.1007/s12274-021-3403-2.  doi: 10.1007/s12274-021-3403-2

    43. [43]

      W. Wang, Y. Zhou, P. Sun, L. Liu, C. Guo, X. Wang, T. Zhang, Y. Cong, Z. Wei, Vacuum 228 (2024) 113526, https://doi.org/10.1016/j.vacuum.2024.113526.  doi: 10.1016/j.vacuum.2024.113526

    44. [44]

      M. Ran, M. Wang, Z. Hu, Y. Huang, L. Wang, L. Wu, M. Yuan, J. Zhang, B. Li, G. Tendeloo, et al., J. Mater. Sci. Technol. 212 (2025) 182, https://doi.org/10.1016/j.jmst.2024.06.016.  doi: 10.1016/j.jmst.2024.06.016

    45. [45]

      J. Cai, W. Xu, H. Chi, Q. Liu, W. Gao, L. Shi, J. Low, Z. Zou, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/PKU.WHXB202407002.  doi: 10.3866/PKU.WHXB202407002

    46. [46]

      S. Hao, Y. Xue, C. Peng, Y. Mi, Y. Yan, M. Wang, Q. Han, G. Zheng, J. Am. Chem. Soc. 146 (2024) 25870, https://doi.org/10.1021/jacs.4c08801.  doi: 10.1021/jacs.4c08801

    47. [47]

      J. Pan, D. Wang, D. Wu, J. Cao, X. Fang, C. Zhao, Z. Zeng, B. Zhang, D. Liu, S. Liu, Adv. Sci. 11 (2024) 2309293, https://doi.org/10.1002/advs.202309293.  doi: 10.1002/advs.202309293

    48. [48]

      J. Wang, J. Wan, N. Yang, Q. Li, D. Wang, Nat. Rev. Chem. 4 (2020) 159, https://doi.org/10.1038/s41570-020-0161-8.  doi: 10.1038/s41570-020-0161-8

    49. [49]

      E. Doustkhah, R. Hassandoost, A. Khataee, R. Luque, M. Assadi, Chem. Soc. Rev. 50 (2021) 2927, https://doi.org/10.1039/c9cs00813f.  doi: 10.1039/c9cs00813f

    50. [50]

      T. Yang, B. Wang, P. Chu, J. Xia, H. Li, Chin. J. Catal. 59 (2024) 204, https://doi.org/10.1016/S1872-2067(24)60003-3.  doi: 10.1016/S1872-2067(24)60003-3

    51. [51]

      X. Luo, C. Fu, S. Shen, L. Luo, J. Zhang, Appl. Catal. B Environ 330 (2023) 122602, https://doi.org/10.1016/j.apcatb.2023.122602.  doi: 10.1016/j.apcatb.2023.122602

    52. [52]

      C. Yuan, W. Wu, Y. Liu, Z. Wang, Y. Yang, L. Han, Q. Zhou, J. Liu, P. Liu, Carbon 195 (2022) 101, https://doi.org/10.1016/j.carbon.2022.04.007.  doi: 10.1016/j.carbon.2022.04.007

    53. [53]

      S. Zhang, J. Sun, H. Ju, Small 20 (2024) 2405712, https://doi.org/10.1002/smll.202405712.  doi: 10.1002/smll.202405712

    54. [54]

      G. Feng, S. Wang, S. Wang, Q. Xu, C. Wang, J. Xiao, C. Song, H. Lu, Sens. Actuators B 410 (2024) 135616, https://doi.org/10.1016/j.snb.2024.135616.  doi: 10.1016/j.snb.2024.135616

    55. [55]

      T. Zheng, X. Ding, T. Sun, X. Yang, X. Wang, X. Zhou, P. Zhang, B. Yu, Y. Wang, Q. Xu, et al., Small 20 (2024) 2307743, https://doi.org/10.1002/smll.202307743.  doi: 10.1002/smll.202307743

    56. [56]

      Y. Zheng, L. Wang, H. Tian, L. Qiao, Y. Zeng, C. Liu, Sens. Actuators B 339 (2021) 129862, https://doi.org/10.1016/j.snb.2021.129862.  doi: 10.1016/j.snb.2021.129862

    57. [57]

      Z. Xiong, Y. Hou, R. Yuan, Z. Ding, W. Ong, S. Wang, Acta Phys. -Chim. Sin. 38 (2022) 2111021, https://doi.org/10.3866/PKU.WHXB202111021.  doi: 10.3866/PKU.WHXB202111021

    58. [58]

      Z. Wen, S. Li, G. Zhang, R. Chen, Y. Zhang, X. Liao, G. Cheng, R. Chen, J. Cleaner Prod. 389 (2023) 136085, https://doi.org/10.1016/j.jclepro.2023.136085.  doi: 10.1016/j.jclepro.2023.136085

    59. [59]

      J. Peng, Z. Zheng, H. Tan, J. Yang, D. Zheng, Y. Song, F. Lu, Y. Chen, W. Gao, Sens. Actuators B 363 (2022) 131863, https://doi.org/10.1016/j.snb.2022.131863.  doi: 10.1016/j.snb.2022.131863

    60. [60]

      Z. Xiong, B. Sun, H. Zou, R. Wang, Q. Fang, Z. Zhang, S. Qiu, J. Am. Chem. Soc. 144 (2022) 6583, https://doi.org/10.1021/jacs.2c02089.  doi: 10.1021/jacs.2c02089

    61. [61]

      H. Qu, B. Li, Y. Ma, Z. Xiao, Z. Lv, Z. Li, W. Li, L. Wang, Adv. Mater. 35 (2023) 2301359, https://doi.org/10.1002/adma.202301359.  doi: 10.1002/adma.202301359

    62. [62]

      M. Farag, S. El-Hakam, A. Ahmed, A. Ibrahim, D. Kospa, Desalination 594 (2025) 118296, https://doi.org/10.1016/j.desal.2024.118296.  doi: 10.1016/j.desal.2024.118296

    63. [63]

      W. Cao, T. Guo, J. Wang, G. Xu, J. Jiang, D. Liu, Coord. Chem. Rev. 497 (2023) 215450, https://doi.org/10.1016/j.ccr.2023.215450.  doi: 10.1016/j.ccr.2023.215450

    64. [64]

      S. Tang, Y. Xia, J. Fan, B. Cheng, J. Yu, W. Ho, Chin. J. Catal. 42 (2021) 743, https://doi.org/10.1016/S1872-2067(20)63695-6.  doi: 10.1016/S1872-2067(20)63695-6

    65. [65]

      J. Sun, R. Tian, Y. Man, Y. Fei, X. Zhou, Chin. Chem. Lett. 34 (2023) 108233, https://doi.org/10.1016/j.cclet.2023.108233.  doi: 10.1016/j.cclet.2023.108233

    66. [66]

      J. Cheng, Y. Liu, X. Zhang, X. Miao, Y. Chen, S. Chen, J. Lin, Y. Zhang, Chem. Eng. J. 419 (2021) 129649, https://doi.org/10.1016/j.cej.2021.129649.  doi: 10.1016/j.cej.2021.129649

    67. [67]

      Y. Ma, L. Zhang, Z. Yan, B. Cheng, J. Yu, T. Liu, Adv. Energy Mater. 12 (2022) 2103820, https://doi.org/10.1002/aenm.202103820.  doi: 10.1002/aenm.202103820

    68. [68]

      N. Kanjana, W. Maiaugree, P. Poolcharuansin, P. Laokul, J. Mater. Sci. Technol. 48 (2020) 105, https://doi.org/10.1016/j.jmst.2020.03.013.  doi: 10.1016/j.jmst.2020.03.013

    69. [69]

      F. Tao, P. Liang, S. Wei, Y. Hu, P. Zhang, W. Wang, Sep. Purif. Technol. 338 (2024) 126510, https://doi.org/10.1016/j.seppur.2024.126510.  doi: 10.1016/j.seppur.2024.126510

    70. [70]

      S. Liang, G. Sui, D. Guo, Z. Luo, R. Xu, H. Yao, J. Li, C. Wang, J. Colloid Interface Sci. 635 (2023) 83, https://doi.org/10.1016/j.jcis.2022.12.120.  doi: 10.1016/j.jcis.2022.12.120

    71. [71]

      L. Yang, Y. Zhao, Y. Zhang, C. Zhu, W. Wang, J. Shi, S. Liu, J. Chen, M. Huang, J. Wu, et al., Small Methods 8 (2024) 2301355, https://doi.org/10.1002/smtd.202301355.  doi: 10.1002/smtd.202301355

    72. [72]

      K. Jin, X. Li, H. Tang, Y. Shi, C. Wang, W. Guo, K. Tian, H. Wang, J. Mater. Sci. Technol. 177 (2024) 224, https://doi.org/10.1016/j.jmst.2023.08.043.  doi: 10.1016/j.jmst.2023.08.043

    73. [73]

      X. Gong, D. Li, Q. Zhang, W. Wang, Z. Tian, G. Su, M. Huang, G. Wang, Nano Res. 16 (2023) 11358, https://doi.org/10.1007/s12274-023-5813-9.  doi: 10.1007/s12274-023-5813-9

    74. [74]

      M. Guo, S. Zhong, T. Xu, Y. Huang, G. Xia, T. Zhang, X. Yu, J. Mater. Chem. A 42 (2021) 23841, https://doi.org/10.1039/D1TA07250A.  doi: 10.1039/D1TA07250A

    75. [75]

      J. Wang, M. Pan, J. Yuan, G. Liu, L. Zhu, ACS Appl. Mater. Interfaces 13 (2021) 14669, https://doi.org/10.1021/acsami.0c22273.  doi: 10.1021/acsami.0c22273

    76. [76]

      L. Wang, B. Zhu, B. Cheng, J. Zhang, L. Zhang, J. Yu, Chin. J. Catal. 42 (2021) 1648, https://doi.org/10.1016/S1872-2067(21)63805-6.  doi: 10.1016/S1872-2067(21)63805-6

    77. [77]

      X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Chem. Rev. 116 (2016) 10983, https://doi.org/10.1021/acs.chemrev.5b00731.  doi: 10.1021/acs.chemrev.5b00731

    78. [78]

      N. Chen, Y. Zhou, S. Cao, R. Wang, W. Jiao, Green Energy Environ. 8 (2023) 509, https://doi.org/10.1016/j.gee.2021.07.002.  doi: 10.1016/j.gee.2021.07.002

    79. [79]

      J. Qu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, ACS Sustainable Chem. Eng. 8 (2020) 10581, https://doi.org/10.1021/acssuschemeng.0c03755.  doi: 10.1021/acssuschemeng.0c03755

    80. [80]

      M. Xiao, Z. Wang, M. Lyu, B. Luo, S. Wang, G. Liu, H. Cheng, L. Wang, Adv. Mater. 31 (2019) 1801369, https://doi.org/10.1002/adma.201801369.  doi: 10.1002/adma.201801369

    81. [81]

      C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 31 (2019) 1902868, https://doi.org/10.1002/adma.201902868.  doi: 10.1002/adma.201902868

    82. [82]

      J. Hu, R. Zhao, H. Li, Z. Xu, H. Dai, H. Gao, H. Yu, Z. Wang, Y. Wang, Y. Liu, et al., Appl. Catal. B Environ 303 (2022) 120869, https://doi.org/10.1016/j.apcatb.2021.120869.  doi: 10.1016/j.apcatb.2021.120869

    83. [83]

      C. Xue, X. Zhou, X. Li, N. Yang, X. Xin, Y. Wang, W. Zhang, J. Wu, W. Liu, F. Huo, Adv. Sci. 9 (2022) 2104183, https://doi.org/10.1002/advs.202104183.  doi: 10.1002/advs.202104183

    84. [84]

      J. Kim, H. Kim, S. Shin, H. Lee, J. Kim, Electrochim. Acta 412 (2022) 140097, https://doi.org/10.1016/j.electacta.2022.140097.  doi: 10.1016/j.electacta.2022.140097

    85. [85]

      Z. Deng, J. Cao, S. Hu, S. Wu, M. Xing, J. Zhang, J. Phys. Chem. C 127 (2023) 8071, https://doi.org/10.1021/acs.jpcc.3c01375.  doi: 10.1021/acs.jpcc.3c01375

    86. [86]

      X. Zhang, Y. He, Y. Wei, R. Yu, Mater. Chem. Front. 22 (2021) 8010, https://doi.org/10.1039/d1qm01124c.  doi: 10.1039/d1qm01124c

    87. [87]

      X. Liu, M. Sayed, C. Bie, B. Cheng, B. Hu, J. Yu, L. Zhang, J. Materiomics 3 (2021) 419, https://doi.org/10.1016/j.jmat.2020.10.010.  doi: 10.1016/j.jmat.2020.10.010

    88. [88]

      H. Chen, L. Shao, J. Ma, W. He, B. Zhang, X. Zhai, Y. Fu, J. Mol. Liq. 375 (2023) 121317, https://doi.org/10.1016/j.molliq.2023.121317.  doi: 10.1016/j.molliq.2023.121317

    89. [89]

      D. Song, X. Xu, X. Huang, G. Li, Y. Zhao, F. Gao, J. Agric. Food Chem. 71 (2023) 2600, https://doi.org/10.1021/acs.jafc.2c08818.  doi: 10.1021/acs.jafc.2c08818

    90. [90]

      L. Sun, X. Yu, L. Tang, W. Wang, Q. Liu, Chin. J. Catal. 52 (2023) 164, https://doi.org/10.1016/S1872-2067(23)64507-3.  doi: 10.1016/S1872-2067(23)64507-3

    91. [91]

      K. She, Y. Huang, W. Fan, M. Yu, J. Zhang, C. Chen, J. Colloid Interface Sci. 656 (2024) 270, https://doi.org/10.1016/j.jcis.2023.11.108.  doi: 10.1016/j.jcis.2023.11.108

    92. [92]

      Y. Zhang, K. Ruan, K. Zhou, J. Gu, Adv. Mater. 35 (2023) 2211642, https://doi.org/10.1002/adma.202211642.  doi: 10.1002/adma.202211642

    93. [93]

      M. Ding, S. Cui, Z. Lin, X. Yang, Appl. Catal. B Environ. Energy 375 (2024) 124333, https://doi.org/10.1016/j.apcatb.2024.124333.  doi: 10.1016/j.apcatb.2024.124333

    94. [94]

      J. Shi, J. Xiong, L. Qiao, C. Liu, Y. Zeng, Appl. Surf. Sci. 609 (2023) 155271, https://doi.org/10.1016/j.apsusc.2022.155271.  doi: 10.1016/j.apsusc.2022.155271

    95. [95]

      F. Tang, X. Wang, F. Ge, W. Pei, J. Yun, S. Lv, T. Wei, Sep. Purif. Technol. 347 (2024) 127682, https://doi.org/10.1016/j.seppur.2024.127682.  doi: 10.1016/j.seppur.2024.127682

    96. [96]

      W. Jia, Q. Lu, T. Tian, G. Pan, R. Tan, B. He, J. Liu, Nanoscale 16 (2024) 18076, https://doi.org/10.1039/d4nr03347g.  doi: 10.1039/d4nr03347g

    97. [97]

      L. Que, L. Lu, Y. Xu, X. Xu, H. Li, J. Cao, M. Zhu, C. Li, J. Pan, Int. J. Hydrogen Energy 48 (2023) 4708, https://doi.org/10.1016/j.ijhydene.2022.11.019.  doi: 10.1016/j.ijhydene.2022.11.019

    98. [98]

      H. Fan, Y. Jin, K. Liu, W. Liu, Adv. Sci. 9 (2022) 2104579, https://doi.org/10.1002/advs.202104579.  doi: 10.1002/advs.202104579

    99. [99]

      T. Hoa, T. Phuong, P. Phuoc, L. Hoa, N. Dieu, N. Nhi, D. Nhan, L. Thang, M. Hien, N. Hieu, et al., Ceram. Int. 51 (2025) 7986, https://doi.org/10.1016/j.ceramint.2024.12.235.  doi: 10.1016/j.ceramint.2024.12.235

    100. [100]

      J. Tang, H. Wang, X. Wang, C. Xie, D. Zeng, Sens. Actuators B Chem 351 (2022) 130954, https://doi.org/10.1016/j.snb.2021.130954.  doi: 10.1016/j.snb.2021.130954

    101. [101]

      R. Zhao, F. Hu, Y. Zhang, B. Dong, Z. Li, W. Qu, C. Liu, Z. Song, P. Lu, D. Ji, et al., Sep. Purif. Technol. 337 (2024) 126367, https://doi.org/10.1016/j.seppur.2024.126367.  doi: 10.1016/j.seppur.2024.126367

    102. [102]

      J. Lee, S. Park, S. Woo, C. Bae, Y. Jeon, M. Gu, J. Kim, Y. Kim, S. Nam, J. Jung, et al., J. Inorg. Chem. Front. 10 (2023) 7146, https://doi.org/10.1039/d3qi01567j.  doi: 10.1039/d3qi01567j

    103. [103]

      W. Li, Q. Gao, M. Shen, B. Li, C. Ren, J. Yang, J. Inorg. Chem. Front. 9 (2022) 1609, https://doi.org/10.1039/d1qi01570b.  doi: 10.1039/d1qi01570b

    104. [104]

      L. Zhang, M. Li, S. Zhang, X. Cao, J. Bo, X. Zhu, J. Han, Q. Ge, H. Wang, Catal. Today 365 (2021) 348, https://doi.org/10.1016/j.cattod.2020.08.001.  doi: 10.1016/j.cattod.2020.08.001

    105. [105]

      H. Lee, S. Lee, Dalton Trans. 49 (2020) 8274, https://doi.org/10.1039/d0dt01228a.  doi: 10.1039/d0dt01228a

    106. [106]

      Y. Zhang, J. Gou, L. Chen, Y. Peng, D. Gao, J. Bi, J. Wu, Z. Xie, Sens. Actuators B 370 (2022) 132402, https://doi.org/10.1016/j.snb.2022.132402.  doi: 10.1016/j.snb.2022.132402

    107. [107]

      G. Geng, W. Zhu, R. Pan, Z. Zhang, C. Gu, J. Li, Nano Today 38 (2021) 101145, https://doi.org/10.1016/j.nantod.2021.101145.  doi: 10.1016/j.nantod.2021.101145

    108. [108]

      N. He, Y. Zou, C. Chen, M. Tan, Y. Zhang, X. Li, Z. Jia, J. Zhang, H. Long, H. Peng, et al., Nat. Commun. 15 (2024) 3896, https://doi.org/10.1038/s41467-024-48160-0.  doi: 10.1038/s41467-024-48160-0

    109. [109]

      C. Zhao, Z. Ge, Z. Jiang, S. Yan, J. Shu, M. Wang, X. Ge, Chin. Chem. Lett. 34 (2023) 107499.https://doi.org/10.1016/j.cclet.2022.05.013.  doi: 10.1016/j.cclet.2022.05.013

    110. [110]

      F. Butt, A. Lewis, R. Rea, N. Mazlan, T. Chen, N. Radacsi, E. Mangano, X. Fan, Y. Yang, S. Yang, et al., ACS Appl. Mater. Interfaces 15 (2023) 31740, https://doi.org/10.1021/acsami.3c06502.  doi: 10.1021/acsami.3c06502

    111. [111]

      D. Mandal, S. Priya, A. Chowdhury, A. Srivastava, A. Chandra, ACS Appl. Nano Mater. 7 (2024) 476, https://doi.org/10.1021/acsanm.3c04684.  doi: 10.1021/acsanm.3c04684

    112. [112]

      Y. Liao, Z. Fan, J. Du, Acta Phys. -Chim. Sin. 37 (2021) 1912053, https://doi.org/10.3866/PKU.WHXB201912053.  doi: 10.3866/PKU.WHXB201912053

    113. [113]

      H. Zhong, J. Wang, T. Wang, S. Zhang, D. Li, P. Tang, N. Alonso-Vante, Y. Feng, ChemElectroChem 5 (2018) 2192, https://doi.org/10.1002/celc.201800487.  doi: 10.1002/celc.201800487

    114. [114]

      Z. Qin, H. Li, X. Yang, L. Chen, Y. Li, K. Shen, Appl. Catal. B Environ 307 (2022) 121163, https://doi.org/10.1016/j.apcatb.2022.121163.  doi: 10.1016/j.apcatb.2022.121163

    115. [115]

      C. Huang, X. Cheng, B. Chen, J. Wang, Y. Dai, Y. Situ, H. Huang, Nano Lett. 22 (2022) 9290, https://doi.org/10.1021/acs.nanolett.2c02768.  doi: 10.1021/acs.nanolett.2c02768

    116. [116]

      X. Luo, Z. Pan, F. Pei, Z. Jin, K. Miao, P. Yang, H. Qian, Q. Chen, G. Feng, J. Ind. Eng. Chem. 59 (2018) 410, https://doi.org/10.1016/j.jiec.2017.10.052.  doi: 10.1016/j.jiec.2017.10.052

    117. [117]

      F. Francois, Q. Tran, S. Piogé, N. Kornienko, V. Maisonneuve, J. Lhoste, A. Guiet, S. Pascual, ACS Appl. Mater. Interfaces 16 (2024) 41351, https://doi.org/10.1021/acsami.4c09575.  doi: 10.1021/acsami.4c09575

    118. [118]

      S. Mei, C. Jafta, I. Lauermann, Q. Ran, M. Kärgell, M. Ballauff, Y. Lu, Adv. Funct. Mater. 27 (2017) 1701176, https://doi.org/10.1002/adfm.201701176.  doi: 10.1002/adfm.201701176

    119. [119]

      J. Ma, Y. Tang, M. Yaseen, L. Qin, X. Chen, S. Xiong, D. Liao, Z. Tong, Sep. Purif. Technol. 322 (2023) 124278, https://doi.org/10.1016/j.seppur.2023.124278.  doi: 10.1016/j.seppur.2023.124278

    120. [120]

      J. Feng, Y. Yin, Adv. Mater. 31 (2019) 1802349, https://doi.org/10.1002/adma.201802349.  doi: 10.1002/adma.201802349

    121. [121]

      H. Xu, C. Gu, G. Wang, P. Nan, J. Zhang, L. Shi, S. Han, B. Ge, Y. Wang, J. Li, et al., J. Am. Chem. Soc. 146 (2024) 30372, https://doi.org/10.1021/jacs.4c10252.  doi: 10.1021/jacs.4c10252

    122. [122]

      C. Sun, D. Lan, Z. Jia, Z. Gao, G. Wu, Small 20 (2024) 2405874, https://doi.org/10.1002/smll.202405874.  doi: 10.1002/smll.202405874

    123. [123]

      G. Shi, Q. Liu, Y. Huang, Y. Wu, R. Huang, L. Zou, X. Liu, J. Li, J. He, L. Yang, et al., Appl. Mater. Today 41 (2024) 102441, https://doi.org/10.1016/j.apmt.2024.102441.  doi: 10.1016/j.apmt.2024.102441

    124. [124]

      H. Ma, F. Zhao, M. Li, P. Wang, Y. Fu, G. Wang, X. Liu, Adv. Powder Mater. 2 (2023) 100117, https://doi.org/10.1016/j.apmate.2023.100117.  doi: 10.1016/j.apmate.2023.100117

    125. [125]

      Z. Liu, H. Tian, R. Xu, W. Men, T. Su, Y. Qu, W. Zhao, D. Liu, Carbon 205 (2023) 138, https://doi.org/10.1016/j.carbon.2023.01.031.  doi: 10.1016/j.carbon.2023.01.031

    126. [126]

      C. Kang, L. Ma, Y. Chen, L. Fu, Q. Hu, C. Zhou, Q. Liu, Chem. Eng. J. 427 (2022) 131003, https://doi.org/10.1016/j.cej.2021.131003.  doi: 10.1016/j.cej.2021.131003

    127. [127]

      R. Zeng, K. Lian, B. Su, L. Lu, J. Lin, D. Tang, S. Lin, X. Wang, Angew. Chem., Int. Ed. 60 (2021) 25055, https://doi.org/10.1002/anie.202110670.  doi: 10.1002/anie.202110670

    128. [128]

      H. Tianou, W. Wang, X. Yang, Z. Cao, Q. Kuang, Z. Wang, Z. Shan, M. Jin, Y. Yin, Nat. Commun. 8 (2017) 1261, https://doi.org/10.1038/s41467-017-01258-0.  doi: 10.1038/s41467-017-01258-0

    129. [129]

      Y. Zhou, S. Zhang, J. Li, L. Liu, C. Wang, B. Bai, H. Hsu, I. Hadar, Z. Yin, M. Buntine, et al., Mater. Today Chem. 38 (2024) 102209, https://doi.org/10.1016/j.mtchem.2024.102029.  doi: 10.1016/j.mtchem.2024.102029

    130. [130]

      C. Yang, X. Li, T. Gao, S. Gu, X. Wang, Y. Wang, Q. Wang, B. Sun, Y. He, G. Zhou, Chem. Eng. J. 474 (2023) 145818, https://doi.org/10.1016/j.cej.2023.145818.  doi: 10.1016/j.cej.2023.145818

    131. [131]

      B. Jiang, W. Tao, L. Zhao, T. Wang, X. Liu, F. Liu, X. Yan, Y. Sun, G. Lu, P. Sun, Sens. Actuators B 385 (2023) 133626, https://doi.org/10.1016/j.snb.2023.133626.  doi: 10.1016/j.snb.2023.133626

    132. [132]

      X. Qi, H. Dong, H. Yan, B. Hou, H. Liu, N. Shang, L. Wang, J. Song, S. Chen, S. Chou, et al., Angew. Chem., Int. Ed. 63 (2024) e202410590, https://doi.org/10.1002/anie.202410590.  doi: 10.1002/anie.202410590

    133. [133]

      M. Zhang, X. Qian, Q. Zeng, Y. Zhang, H. Cao, R. Che, Carbon 175 (2021) 499, https://doi.org/10.1016/j.carbon.2021.01.013.  doi: 10.1016/j.carbon.2021.01.013

    134. [134]

      M. Rigamonti, M. Chavalle, H. Li, P. Antitomaso, L. Hadidi, M. Stucchi, F. Galli, H. Khan, M. Dollé, D. Boffito, et al., J. Power Sources 462 (2020) 228103, https://doi.org/10.1016/j.jpowsour.2020.228103.  doi: 10.1016/j.jpowsour.2020.228103

    135. [135]

      R. Li, Y. Zhou, C. Liu, C. Pei, W. Shu, C. Zhang, L. Liu, L. Zhou, J. Wan, Angew. Chem., Int. Ed. 60 (2021) 12504, https://doi.org/10.1002/anie.202101007.  doi: 10.1002/anie.202101007

    136. [136]

      P. Cai, T. Liu, L. Zhang, B. Cheng, J. Yu, Appl. Surf. Sci. 504 (2020) 144501, https://doi.org/10.1016/j.apsusc.2019.144501.  doi: 10.1016/j.apsusc.2019.144501

    137. [137]

      H. Xu, X. Niu, Z. Liu, M. Sun, Z. Liu, Z. Tian, X. Wu, B. Huang, Y. Tang, C. Yan, Small 17 (2021) 2103064, https://doi.org/10.1002/smll.202103064.  doi: 10.1002/smll.202103064

    138. [138]

      Y. Zeng, X. Lu, S. Zhang, D. Luan, S. Li, X. Lou, Angew. Chem., Int. Ed. 60 (2021) 22189, https://doi.org/10.1002/anie.202107697.  doi: 10.1002/anie.202107697

    139. [139]

      J. Yu, H. Guo, S. Davis, S. Mann, Adv. Funct. Mater. 16 (2006) 2035, https://doi.org/10.1002/adfm.200600552.  doi: 10.1002/adfm.200600552

    140. [140]

      W. Liu, J. Huang, Q. Yang, S. Wang, X. Sun, W. Zhang, J. Liu, F. Huo, Angew. Chem., Int. Ed. 56 (2017) 5512, https://doi.org/10.1002/ange.201701604.  doi: 10.1002/ange.201701604

    141. [141]

      S. Yu, J. Li, J. Yin, W. Liang, Y. Zhang, T. Liu, M. Hu, Y. Wang, Z. Wu, Y. Zhang, Chin. Chem. Lett. 35 (2024) 110068, https://doi.org/10.1016/j.cclet.2024.110068.  doi: 10.1016/j.cclet.2024.110068

    142. [142]

      T. Dou, Y. Zhu, Z. Chu, L. Sun, Z. Li, L. Jing, Appl. Catal. B Environ. Energy 354 (2024) 124112, https://doi.org/10.1016/j.apcatb.2024.124112.  doi: 10.1016/j.apcatb.2024.124112

    143. [143]

      G. Wang, K. Wang, Z. Liu, Y. Feng, S. Yang, Y. Su, X. Qian, P. Jin, J. Wei, Appl. Catal. B Environ 325 (2023) 122359, https://doi.org/10.1016/j.apcatb.2023.122359.  doi: 10.1016/j.apcatb.2023.122359

    144. [144]

      D. Wang, F. Yin, B. Cheng, Y. Xia, J. Yu, W. Ho, Rare Met. 40 (2021) 2369, https://doi.org/10.1007/s12598-021-01731-2.  doi: 10.1007/s12598-021-01731-2

    145. [145]

      J. Zhang, S. Wang, F. Liu, X. Fu, G. Ma, M. Hou, Z. Tang, Acta Phys. -Chim. Sin. 35 (2019) 885, https://doi.org/10.3866/PKU.WHXB201812022.  doi: 10.3866/PKU.WHXB201812022

    146. [146]

      H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195 (2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081.  doi: 10.1016/j.jmst.2023.11.081

    147. [147]

      L. Wang, H. Xiao, L. Yang, J. Li, J. Zi, Z. Lian, Adv. Funct. Mater. 35 (2025) 2416358, https://doi.org/10.1002/adfm.202416358.  doi: 10.1002/adfm.202416358

    148. [148]

      C. Yang, X. Li, M. Li, G. J. Liang, Z. L. Jin, Chin. J. Catal. 56 (2024) 88, https://doi.org/10.1016/s1872-2067(23)64563-2.  doi: 10.1016/s1872-2067(23)64563-2

    149. [149]

      B. Wang, S. Guo, X. Xin, Y. Zhang, Y. Wang, C. Li, Y. Song, D. Deng, X. Li, A. Sobrido, Adv. Energy Mater. 10 (2020) 2001575, https://doi.org/10.1002/aenm.202001575.  doi: 10.1002/aenm.202001575

    150. [150]

      Y. Xu, W. Tai, Z. Wang, L. Zhang, D. Wang, J. Liao, Sci. China Mater. 67 (2023) 153, https://doi.org/10.1007/s40843-023-2659-9.  doi: 10.1007/s40843-023-2659-9

    151. [151]

      X. Dang, X. Cui, H. Zhang, X. Chen, H. Zhao, ACS Sustainable Chem. Eng. 11 (2023) 13096, https://doi.org/10.1021/acssuschemeng.3c03183.  doi: 10.1021/acssuschemeng.3c03183

    152. [152]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.  doi: 10.1016/S1872-2067(23)64580-2

    153. [153]

      J. Li, Z. Liu, W. Li, H. Ma, P. Fang, R. Xiong, C. Pan, J. Wei, J. Colloid Interface Sci. 682 (2025) 41, https://doi.org/10.1016/j.jcis.2024.11.174.  doi: 10.1016/j.jcis.2024.11.174

    154. [154]

      C. Feng, L. Zhang, Mater. Horiz. 11 (2024) 1515, https://doi.org/10.1039/d3mh01915b.  doi: 10.1039/d3mh01915b

    155. [155]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    156. [156]

      Y. Xu, J. Liao, L. Zhang, Z. Sun, C. Ge, J. Colloid Interface Sci. 647 (2023) 446, https://doi.org/10.1016/j.jcis.2023.05.140.  doi: 10.1016/j.jcis.2023.05.140

    157. [157]

      Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 143, https://doi.org/10.1016/j.jmst.2020.02.062.  doi: 10.1016/j.jmst.2020.02.062

    158. [158]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.  doi: 10.1038/s41467-021-25007-6

    159. [159]

      T. Bao, Y. Xi, C. Zhang, P. Du, Y. Xiang, J. Li, L. Yuan, C. Yu, C. Liu, Natl. Sci. Rev. 11 (2024) nwae093, https://doi.org/10.1093/nsr/nwae093.  doi: 10.1093/nsr/nwae093

    160. [160]

      F. Zhao, L. Shi, J. Cui, Y. Lin, Acta Phys. -Chim. Sin. 32 (2016) 2069, https://doi.org/10.3866/PKU.WHXB201604224.  doi: 10.3866/PKU.WHXB201604224

    161. [161]

      C. Li, M. Gu, M. Gao, K. Liu, X. Zhao, N. Cao, J. Feng, Y. Ren, T. Wei, M. Zhang, J. Colloid Interface Sci. 609 (2022) 341, https://doi.org/10.1016/j.jcis.2021.11.180.  doi: 10.1016/j.jcis.2021.11.180

    162. [162]

      Y. Peng, B. Cheng, L. Zhang, J. Liu, J. Yu, Sens. Actuators B 385 (2023) 133700, https://doi.org/10.1016/j.snb.2023.133700.  doi: 10.1016/j.snb.2023.133700

    163. [163]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.  doi: 10.3866/PKU.WHXB202403005

    164. [164]

      X. Feng, L. Zhang, J. Mater. Sci. Technol. 156 (2023) 54, https://doi.org/10.1016/j.jmst.2022.09.040.  doi: 10.1016/j.jmst.2022.09.040

    165. [165]

      J. Ye, B. Cheng, J. Yu, W. Ho, S. Wageh, A. Al-Ghamdi, Chem. Eng. J. 430 (2022) 132715, https://doi.org/10.1016/j.cej.2021.132715.  doi: 10.1016/j.cej.2021.132715

    166. [166]

      H. Dai, Z. Liu, L. Ou, Y. Shen, Z. Ning, F. Hu, X. Peng, J. Environ. Chem. Eng. 11 (2023) 110797, https://doi.org/10.1016/j.jece.2023.110797.  doi: 10.1016/j.jece.2023.110797

    167. [167]

      L. Lin, Q. He, Y. Chen, B. Wang, L. Zhang, X. Dai, Y. Jiang, H. Chen, J. Liao, Y. Mao, et al., J. Colloid Interface Sci. 644 (2023) 29, https://doi.org/10.1016/j.jcis.2023.04.069.  doi: 10.1016/j.jcis.2023.04.069

    168. [168]

      J. Moon, E. Oh, T. Koo, Y. Jeon, Y. Jang, H. Fu, M. Ko, Y. Kim, Adv. Mater. 36 (2024) 2312214, https://doi.org/10.1002/adma.202312214.  doi: 10.1002/adma.202312214

    169. [169]

      L. Zhou, Q. Fang, M. Liu, S. Farhan, S. Yang, Y. Wu, Inorg. Chem. 63 (2024) 21202, https://doi.org/10.1021/acs.inorgchem.4c03502.  doi: 10.1021/acs.inorgchem.4c03502

    170. [170]

      X. Cai, J. Du, G. Zhong, Y. Zhang, L. Mao, Z. Lou, Acta Phys. -Chim. Sin. 39 (2023) 2302017, https://doi.org/10.3866/PKU.WHXB202302017.  doi: 10.3866/PKU.WHXB202302017

    171. [171]

      Y. Wang, B. Zhu, B. Cheng, W. Macyk, P. Kuang, J. Yu, Appl. Catal. B Environ 314 (2022) 121503, https://doi.org/10.1016/j.apcatb.2022.121503.  doi: 10.1016/j.apcatb.2022.121503

    172. [172]

      N. Kumar, S. Lee, S. Park, Nano Today 56 (2024) 102302, https://doi.org/10.1016/j.nantod.2024.102302.  doi: 10.1016/j.nantod.2024.102302

    173. [173]

      A. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys. -Chim. Sin. 40 (2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020.  doi: 10.3866/PKU.WHXB202406020

    174. [174]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    175. [175]

      H. Hou, X. Zeng, X. Zhang, Angew. Chem., Int. Ed. 59 (2020) 17356, https://doi.org/10.1002/anie.201911609.  doi: 10.1002/anie.201911609

    176. [176]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054.  doi: 10.1016/j.jmst.2023.03.054

    177. [177]

      H. Luo, T. Shan, J. Zhou, L. Huang, L. Chen, R. Sa, Y. Yamauchi, J. You, Y. Asakura, Z. Yuan, et al., Appl. Catal. B Environ 337 (2023) 122933, https://doi.org/10.1016/j.apcatb.2023.122933.  doi: 10.1016/j.apcatb.2023.122933

    178. [178]

      R. Zeng, T. Liu, M. Qiu, H. Tan, Y. Gu, N. Ye, Z. Dong, L. Li, F. Lin, Q. Sun, et al., J. Am. Chem. Soc. 146 (2024) 9721, https://doi.org/10.1021/jacs.3c13827.  doi: 10.1021/jacs.3c13827

    179. [179]

      H. Jung, C. Kim, H. Yoo, J. You, J. Kim, A. Jamal, I. Gereige, J. Ager, H. Jung, Energy Environ. Sci. 16 (2023) 2869, https://doi.org/10.1039/d3ee00507k.  doi: 10.1039/d3ee00507k

    180. [180]

      M. Xiao, D. Li, Y. Wei, Y. He, Z. Wang, R. Yu, Chem. Res. Chin. Univ. 40 (2024) 513, https://doi.org/10.1007/s40242-024-4051-3.  doi: 10.1007/s40242-024-4051-3

    181. [181]

      Y. Xu, Y. Ren, X. Liu, H. Li, Z. Lu, Acta Phys. -Chim. Sin. 40 (2024) 2403032, https://doi.org/10.3866/PKU.WHXB202403032.  doi: 10.3866/PKU.WHXB202403032

    182. [182]

      S. Wageh, O. Al-Hartomy, M. Alotaibi, L. Liu, Rare Met. 41 (2022) 1077, https://doi.org/10.1007/s12598-021-01902-1.  doi: 10.1007/s12598-021-01902-1

    183. [183]

      Y. Wei, F. You, D. Zhao, J. Wan, L. Gu, D. Wang, Angew. Chem., Int. Ed. 61 (2022) e202212049, https://doi.org/10.1002/anie.202212049.  doi: 10.1002/anie.202212049

    184. [184]

      P. Chen, W. Ma, W. He, J. Liao, Q. Xia, A. Jiang, Y. Ma, W. Ai, Y. Wang, W. Zhang, J. Catal. 434 (2024) 115538, https://doi.org/10.1016/j.jcat.2024.115538.  doi: 10.1016/j.jcat.2024.115538

    185. [185]

      H. Wang, Z. Chen, Y. Shang, C. Lv, X. Zhang, F. Li, Q. Huang, X. Liu, W. Liu, L. Zhao, ACS Catal. 14 (2024) 5779, https://doi.org/10.1021/acscatal.3c06169.  doi: 10.1021/acscatal.3c06169

    186. [186]

      T. Wang, C. Feng, J. Liu, D. Wang, H. Hu, J. Hu, Z. Chen, G. Xue, Chem. Eng. J. 414 (2021) 128827, https://doi.org/10.1016/j.cej.2021.128827.  doi: 10.1016/j.cej.2021.128827

    187. [187]

      M. Nazemi, M. El-Sayed, Nano Energy 63 (2019) 103886, https://doi.org/10.1016/j.nanoen.2019.103886.  doi: 10.1016/j.nanoen.2019.103886

    188. [188]

      Q. Han, X. Bai, J. Chen, S. Feng, W. Gao, W. Tu, X. Wang, J. Wang, B. Jia, Q. Shen, et al., Adv. Mater. 33 (2021) 2006780, https://doi.org/10.1002/adma.202006780.  doi: 10.1002/adma.202006780

    189. [189]

      M. Zhong, Z. Wang, D. Dai, B. Yang, S. Zuo, C. Yao, F. Wu, X. Li, J. Rare Earths 40 (2022) 586, https://doi.org/10.1016/j.jre.2021.03.004.  doi: 10.1016/j.jre.2021.03.004

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Aoyun MengZhenhua LiGuoyuan XiongZhen LiJinfeng Zhang . S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides. Acta Physico-Chimica Sinica, 2026, 42(5): 100186-0. doi: 10.1016/j.actphy.2025.100186

    6. [6]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Yukai SHENZhaochao YANYangjun ZHOUMei HUANG . Nickel foam-supported NiFeP/NiFcDCA heterojunction electrocatalyst for efficient urea oxidation reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 237-246. doi: 10.11862/CJIC.20250257

    8. [8]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    13. [13]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    14. [14]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    15. [15]

      Zhiwen HUHuiying ZHANGJiayan ZHOUYulong YANGPing LIZelong CHENWeixia DONGQifu BAO . Time evolution of in-situ synthesized Bi12TiO20/BaTiO3 heterojunctions and catalytic mechanisms. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 65-77. doi: 10.11862/CJIC.20250172

    16. [16]

      Xian-Wei LvXinyuan DingJiaxing GongXuhuan YanDayong HuangJianxin GengZhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151

    17. [17]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    18. [18]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    19. [19]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(6)
  • Abstract views(875)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return