Citation: Jun Huang,  Pengfei Nie,  Yongchao Lu,  Jiayang Li,  Yiwen Wang,  Jianyun Liu. 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100066. doi: 10.1016/j.actphy.2025.100066 shu

丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子

  • Received Date: 18 December 2024
    Revised Date: 25 January 2025
    Accepted Date: 12 February 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (21776045) and the Natural Science Foundation of Shanghai (23ZR1401200).

  • 电容去离子(CDI)是一种具有广阔前景的电脱盐技术。通过引入成本低、无毒的电极材料,CDI在水体硬度离子的选择性去除方面呈现显著优势。丝光沸石(MOR)是天然的、环保型离子交换材料。本研究通过静电纺丝法,将MOR有效嵌入纳米纤维,随后进行炭化处理得到丝光沸石负载氮掺杂碳纳米纤维(MOR@N-CNF)。研究证实了MOR在碳纳米纤维基体中均匀分布。MOR@N-CNF表现出增强的亲水性的高的比表面积。而且纤维柔性好、导电性高,作为自支撑电极 在CaCl2溶液中,呈现高的电化学比电容(162.7 F·g-1)。直接用于CDI阴极与活性炭(AC)阳极构成非对称CDI系统,进行选择性硬度离子吸附。MOR@N-CNF阴极对Mg2+和Ca2+的吸附容量分别为1501和1416 μmol·g-1,且对这两种离子的选择性远高于Na+ (对Ca2+的选择性系数为9.7,对Mg2+的选择性系数为8.9)。经过40次循环测试后,该电极保留了78%的吸附能力,展现出优异的循环稳定性。本研究不仅为离子交换型复合电极材料的制备提供了新思路,也进一步凸显了CDI技术在硬水软化领域的潜力。
  • 加载中
    1. [1]

      Ayaz, M.; Namazi, M. A.; Din, M. A. U.; Ershath, M. I. M.; Mansour, A.; Aggoune, E.-H. M. Desalination 2022, 540, 116022. doi: 10.1016/j.desal.2022.116022

    2. [2]

      Egbueri, J. C. Environ. Sci. Pollut. Res. Int. 2023, 30 (22), 61626. doi: 10.1007/s11356-023-26396-5

    3. [3]

      Gitis, V.; Hankins, N. J. Water Process Eng. 2018, 25, 34. doi: 10.1016/j.jwpe.2018.06.003

    4. [4]

      Wu, Q.; Liang, D.; Lu, S.; Wang, H.; Xiang, Y.; Aurbach, D.; Avraham, E.; Cohen, I. Desalination 2022, 542, 116043. doi: 10.1016/j.desal.2022.116043

    5. [5]

      Alaei Shahmirzadi, M. A.; Hosseini, S. S.; Luo, J.; Ortiz, I. J. Environ. Manage. 2018, 215, 324. doi: 10.1016/j.jenvman.2018.03.040

    6. [6]

      Dou, W.; Zhou, Z.; Jiang, L. M.; Jiang, A.; Huang, R.; Tian, X.; Zhang, W.; Chen, D. J. Environ. Manage. 2017, 196, 518. doi: 10.1016/j.jenvman.2017.03.054

    7. [7]

      Afsari, M.; Shon, H. K.; Tijing, L. D. Adv. Colloid Interface Sci. 2021, 289, 102362. doi: 10.1016/j.cis.2021.102362

    8. [8]

      Xiong, Y.; Yu, F.; Ma, J. Acta Phys. Chim. Sin. 2022, 38 (5), 2006037.

    9. [9]

      Wang, L.; Yu, F.; Ma, J. Acta Phys. Chim. Sin. 2017, 33 (7), 1338.

    10. [10]

      Sivasubramanian, P.; Kumar, M.; Kirankumar, V. S.; Samuel, M. S.; Dong, C.-D.; Chang, J.-H. Desalination 2023, 559, 116652. doi: 10.1016/j.desal.2023.116652

    11. [11]

      Zhao, X.; He, Z.; Li, M.; He, C.; Xu, Y.; Wang, Y.; Ma, J.; Yang, H. Y. Desalination 2025, 597, 118377. doi: 10.1016/j.desal.2024.118377

    12. [12]

      Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Prog. Mater Sci. 2013, 58 (8), 1388. doi: 10.1016/j.pmatsci.2013.03.005

    13. [13]

      Tang, W.; Liang, J.; He, D.; Gong, J.; Tang, L.; Liu, Z.; Wang, D.; Zeng, G. Water Res. 2019, 150, 225. doi: 10.1016/j.watres.2018.11.064

    14. [14]

      Lu, M.; Liu, J. Y.; Cheng, J.; Wang, S. P.; Yang, J. M. Acta Phys. Chim. Sin. 2014, 30 (12), 2263.

    15. [15]

      Wang, D.; Zhang, Y.; Dong, H.; Chen, H.; SenGupta, A. Environ. Sci. Water Res. Technol. 2024, 10 (6), 1319. doi: 10.1039/d4ew00125g

    16. [16]

      Sharma, V.; Mishra, S.; raj, S. K.; Upadhyay, P.; Kulshrestha, V. Colloids Surf. A 2023, 676, 132064. doi: 10.1016/j.colsurfa.2023.132064

    17. [17]

      Li, J.; Corma, A.; Yu, J. Chem. Soc. Rev. 2015, 44 (20), 7112. doi: 10.1039/c5cs00023h

    18. [18]

      Gao, S.; Wang, S.; Sun, Y.; Wang, J.; Hu, P.; Shang, J.; Ma, Z.; Liang, Y. Renewable Energy 2023, 215, 119033. doi: 10.1016/j.renene.2023.119033

    19. [19]

      Nakamoto, K.; Ohshiro, M.; Kobayashi, T. J. Environ. Chem. Eng. 2017, 5 (1), 513. doi: 10.1016/j.jece.2016.12.031

    20. [20]

      Liu, Y.; Ma, W.; Cheng, Z.; Xu, J.; Wang, R.; Gang, X. Desalination 2013, 326, 109. doi: 10.1016/j.desal.2013.07.022

    21. [21]

      Kim, C.; Lee, J.; Kim, S.; Yoon, J. Desalin. Water Treat. 2016, 57 (51), 24682. doi: 10.1080/19443994.2016.1152638

    22. [22]

      Nie, P.; Hu, B.; Shang, X.; Xie, Z.; Huang, M.; Liu, J. Sep. Purif. Technol. 2020, 250, 117240. doi: 10.1016/j.seppur.2020.117240

    23. [23]

      Liu, J.; Wang, S.; Yang, J.; Liao, J.; Lu, M.; Pan, H.; An, L. Desalination 2014, 344, 446. doi: 10.1016/j.desal.2014.04.015

    24. [24]

      Pan, H.; Yang, J.; Wang, S.; Xiong, Z.; Cai, W.; Liu, J. J. Mater. Chem. A 2015, 3 (26), 13827. doi: 10.1039/c5ta02954f

    25. [25]

      Wang, R.; Hu, D.; Du, P.; Weng, X.; Tang, H.; Zhang, R.; Song, W.; Lin, S.; Huang, K.; Zhang, R.; et al. Front. Chem. 2021, 9, 812375. doi: 10.3389/fchem.2021.812375

    26. [26]

      Xu, Z.; Ye, J.; Pan, Y.; Liu, K.; Liu, X.; Shui, J. Energy Technol. 2022, 10 (4), 2101024. doi: 10.1002/ente.202101024

    27. [27]

      Zhang, H.; Xie, Z.; Wang, Y.; Shang, X.; Nie, P.; Liu, J. RSC Adv. 2017, 7 (87), 55224. doi: 10.1039/c7ra12001j

    28. [28]

      Nie, P.; Wang, S.; Shang, X.; Hu, B.; Huang, M.; Yang, J.; Liu, J. Desalination 2021, 520, 115340. doi: 10.1016/j.desal.2021.115340

    29. [29]

      Luo, M.; Chen, J.; Li, Q.; Wang, Y. Industrial & Engineering Chemistry Research 2023, 62 (22), 8744. doi: 10.1021/acs.iecr.3c00807

    30. [30]

      Zhou, Q.; Lv, G.; Li, H.; Hu, S.; Liu, H.; Li, L.; He, L.; Li, H.; Hu, P.; Wang, J. J. Power Sources 2024, 623, 235509. doi: 10.1016/j.jpowsour.2024.235509

    31. [31]

      Lankapati, H. M.; Lathiya, D. R.; Choudhary, L.; Dalai, A. K.; Maheria, K. C. ChemistrySelect 2020, 5 (3), 1193. doi: 10.1002/slct.201903715

    32. [32]

      Kalijadis, A.; Gavrilov, N.; Jokić, B.; Gilić, M.; Krstić, A.; Pašti, I.; Babić, B. Mater. Chem. Phys. 2020, 239, 122120. doi: 10.1016/j.matchemphys.2019.122120

    33. [33]

      Ajravat, K.; Rajput, S.; Brar, L. K. Diamond Relat. Mater. 2022, 129, 109373. doi: 10.1016/j.diamond.2022.109373

    34. [34]

      Tan, B.; Li, H.; Yuan, Q.; An, F. Mater. Today Commun. 2024, 41, 110459. doi: 10.1016/j.mtcomm.2024.110459

    35. [35]

      Zheng, Y.; Chen, K.; Jiang, K.; Zhang, F.; Zhu, G.; Xu, H. J. Energy Storage. 2022, 56, 105995. doi: 10.1016/j.est.2022.105995

    36. [36]

      Abbas, Q.; Mirzaeian, M.; Ogwu, A. A.; Mazur, M.; Gibson, D. Int. J. Hydrogen Energy 2020, 45 (25), 13586. doi: 10.1016/j.ijhydene.2018.04.099

    37. [37]

      Hou, C.-H.; Huang, C.-Y. Desalination 2013, 314, 124. doi: 10.1016/j.desal.2012.12.029

    38. [38]

      Yoon, H.; Lee, J.; Kim, S.-R.; Kang, J.; Kim, S.; Kim, C.; Yoon, J. Desalination 2016, 392, 46. doi: 10.1016/j.desal.2016.03.019

    39. [39]

      Leong, Z. Y.; Zhang, J.; Vafakhah, S.; Ding, M.; Guo, L.; Yang, H. Y. Desalination 2021, 520, 115374. doi: 10.1016/j.desal.2021.115374

    40. [40]

      Xu, Y.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. ACS Appl. Mater Interfaces 2020, 12 (37), 41437. doi: 10.1021/acsami.0c11233

    41. [41]

      Xu, Y.; Xiang, S.; Zhou, H.; Wang, G.; Zhang, H.; Zhao, H. ACS Appl. Mater Interfaces 2021, 13 (32), 38886. doi: 10.1021/acsami.1c09996

    42. [42]

      Gao, F.; Du, X.; Hao, X.; Ma, X.; Chang, L.; Han, N.; Guan, G.; Tang, K. Chem. Eng. J. 2020, 380, 122413. doi: 10.1016/j.cej.2019.122413

    43. [43]

      Niu, Y.; Meng, K.; Ming, S.; Chen, H.; Yu, X.; Rong, J.; Li, X. Diamond Relat. Mater. 2023, 136, 109925. doi: 10.1016/j.diamond.2023.109925

    44. [44]

      Wang, B.; Koike, N.; Iyoki, K.; Chaikittisilp, W.; Wang, Y.; Wakihara, T.; Okubo, T. Phys. Chem. Chem. Phys. 2019, 21 (7), 4015. doi: 10.1039/c8cp06975a

    45. [45]

      Huyskens, C.; Helsen, J.; de Haan, A. B. Desalination 2013, 328, 8. doi: 10.1016/j.desal.2013.07.002

  • 加载中
    1. [1]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    4. [4]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

Metrics
  • PDF Downloads(0)
  • Abstract views(34)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return