Citation: Peng Li, Yuanying Cui, Zhongliao Wang, Graham Dawson, Chunfeng Shao, Kai Dai. Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100065. doi: 10.1016/j.actphy.2025.100065 shu

Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction

  • Corresponding author: Chunfeng Shao, shaocf@chnu.edu.cn Kai Dai, daikai940@chnu.edu.cn
  • Received Date: 14 January 2025
    Revised Date: 13 February 2025
    Accepted Date: 13 February 2025

    Fund Project: the National Natural Science Foundation of China 22278169the Excellent Scientific Research and Innovation Team of Education Department of Anhui Province 2022AH010028Anhui Provincial Quality Engineering Project 2022sx134

  • Improving the separation efficiency of photogenerated charge carriers to significantly enhance the redox capability of photocatalysts remains a major challenge in the field of photocatalysis. To address this issue, this study successfully synthesized a CeO2/Bi19Br3S27 S-scheme heterojunction catalyst using a hydrothermal method, aiming to enhance the photocatalytic performance of the catalyst. The synthesis of the CeO2/Bi19Br3S27 composite not only improved the separation efficiency of photogenerated charge carriers but also endowed the catalyst with stronger redox capabilities and greater driving force, significantly boosting its photocatalytic performance. Experimental results showed that the CO production rate of the CeO2/Bi19Br3S27 composite catalyst reached 13.5 μmol g−1 h−1, which is 5.19 times higher than that of the pure Bi19Br3S27 catalyst and 2.81 times higher than that of the pure CeO2 catalyst. This significant enhancement indicates that the CeO2/Bi19Br3S27 composite catalyst exhibited stronger catalytic performance in CO generation reactions. Furthermore, CeO2/Bi19Br3S27 catalyst achieved a CH4 production rate of 4.3 μmol g−1 h−1, which is 3.1 times higher than that of the CeO2 catalyst and 2.7 times higher than that of the Bi19Br3S27 catalyst, further confirming its superior performance in CH4 generation reactions. These results demonstrate that the CeO2/Bi19Br3S27 composite catalyst not only shows significant improvements in CO and CH4 production rates but also exhibits excellent photocatalytic performance, highlighting its potential application in the field of photocatalysis. This study provides new insights into improving the separation efficiency of photogenerated charges and offers valuable references for the future development of highly efficient photocatalytic materials. By constructing the S-scheme heterojunction structure, the recombination of photogenerated charge carriers can be effectively suppressed, thereby enhancing the efficiency of photocatalytic reactions and providing a new solution for sustainable energy utilization.
  • 加载中
    1. [1]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    2. [2]

      He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi: 10.1002/adfm.202315426  doi: 10.1002/adfm.202315426

    3. [3]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    4. [4]

      Zhu, C.-Z.; Tian, Q.-H.; Wang, B.-H.; Xu, M.-T.; Jin, Q.-J.; Zhang, Z.-Y.; Le, S.-K.; Wu, Y.; Wei, Y.-C.; Xu, H.-T. Rare Met. 2024, 43, 5473. doi: 10.1007/s12598-024-02746-1  doi: 10.1007/s12598-024-02746-1

    5. [5]

      Xu, F.; He, Y.; Zhang, J.; Liang, G.; Liu, C.; Yu, J. Angew. Chem. Int. Ed. 2025, 64, e202414672. doi: 10.1002/anie.202414672  doi: 10.1002/anie.202414672

    6. [6]

      Zhao, X.; Li, J.; Kong, X.; Li, C.; Lin, B.; Dong, F.; Yang, G.; Shao, G.; Xue, C. Small. 2022, 18, 2204154. doi: 10.1002/smll.202204154  doi: 10.1002/smll.202204154

    7. [7]

      Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi: 10.1016/j.jmst.2023.11.081  doi: 10.1016/j.jmst.2023.11.081

    8. [8]

      Wang, J.; Wang, Z.; Zhang, J.; Mamatkulov, S.; Dai, K.; Ruzimuradov, O.; Low, J. ACS Nano 2024, 18, 20740. doi: 10.1021/acsnano.4c06954  doi: 10.1021/acsnano.4c06954

    9. [9]

      Ding, S.; Duan, J.; Chen, S. EcoEnergy. 2024, 2, 45. doi: 10.1002/ece2.26  doi: 10.1002/ece2.26

    10. [10]

      He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. ACS Catal. 2024, 14, 1951. doi: 10.1021/acscatal.4c00026  doi: 10.1021/acscatal.4c00026

    11. [11]

      Wang, X.; Liu, B.; Zhang, Y.; Butburee, T.; Ostrikov, K.; Wang, S.; Huang, W. EcoEnergy 2023, 1, 108. doi: 10.1002/ece2.11  doi: 10.1002/ece2.11

    12. [12]

      Ding, H.; Shen, R.; Huang, K.; Huang, C.; Liang, G.; Zhang, P.; Li, X. Adv. Funct. Mater. . 2024, 34, 2400065. doi: 10.1002/adfm.202400065  doi: 10.1002/adfm.202400065

    13. [13]

      Zhang, B.; Cao, X.; Suo, C.; Cui, J.; Duan, X.; Guo, S.; Zhang, X.-M. Sci. China. Mater. 2024, 67, 3151. doi: 10.1007/s40843-024-3021-1  doi: 10.1007/s40843-024-3021-1

    14. [14]

      Zhou, S.; Wen D.; Zhong W.; Zhang J.; Su Y.; Meng, A. J. Mater. Sci. Technol. 2024, 199, 53. doi: 10.1016/j.jmst.2024.02.048  doi: 10.1016/j.jmst.2024.02.048

    15. [15]

      Sun, P.; Zhang, J.; Song, Y.; Mo, Z.; Chen, Z.; Xu, H. Acta Phys. -Chim. Sin. 2024, 40, 2311001. doi: 10.3866/PKU.WHXB202311001  doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Rabiee, H.; Yan, P.; Wang, H.; Zhu, Z.; Ge, L. EcoEnergy 2024, 2, 3. doi: 10.1002/ece2.23  doi: 10.1002/ece2.23

    17. [17]

      Yang, H.; Wang, Z.; Zhang, J.; Dai, K.; Low, J. J. Materiomics 2025, 11, 100996. doi: 10.1016/j.jmat.2024.100996  doi: 10.1016/j.jmat.2024.100996

    18. [18]

      Verma, P.; Rahimi, F. A.; Samanta, D.; Kundu, A.; Dasgupta, J.; Maji, T. K. Angew. Chem. Int. Ed. 2022, 61, e202116094. doi: 10.1002/anie.202116094  doi: 10.1002/anie.202116094

    19. [19]

      Xiao, Y.; Yao, C.; Su, C.; Liu, B. EcoEnergy. 2023, 1, 60. doi: 10.1002/ece2.6  doi: 10.1002/ece2.6

    20. [20]

      Chen, C.; Zhang, J.; Chu, H.; Sun, L.; Dawson, G.; Dai, K. Chin. J. Catal. 2024, 63, 81. doi: 10.1016/s1872-2067(24)60072-0  doi: 10.1016/s1872-2067(24)60072-0

    21. [21]

      Meng A.; Yang P.; Fu D.; Peng W.; Zhong W.; Su, Y. J. Colloid Interface Sci. 2025, 684, 148. doi: 10.1016/j.jcis.2024.12.241  doi: 10.1016/j.jcis.2024.12.241

    22. [22]

      Cui, Y.; Zhang, J.; Chu, H.; Sun, L.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2405016. doi: 10.3866/PKU.WHXB202405016  doi: 10.3866/PKU.WHXB202405016

    23. [23]

      Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin J Catal. 2023, 52, 32. doi: 10.1016/s1872-2067(23)64502-4  doi: 10.1016/s1872-2067(23)64502-4

    24. [24]

      Wu, R.; Gao, S.; Jones, C.; Sun, M.; Guo, M.; Tai, R.; Chen, S.; Wang, Q. Adv. Funct. Mater. 2024, 34, 2314051. doi: 10.1002/adfm.202314051  doi: 10.1002/adfm.202314051

    25. [25]

      Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi: 10.1016/j.jmst.2023.05.030  doi: 10.1016/j.jmst.2023.05.030

    26. [26]

      Wen, D.; Zhao, J.; You, Y.; Huang, L.; Zhu, H.; Zhang, C.; Bu, D.; Huang, S. Energ. Environ. Sci. 2024, 17, 6245. doi: 10.1039/d4ee02356k  doi: 10.1039/d4ee02356k

    27. [27]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi: 10.3866/PKU.WHXB202309031  doi: 10.3866/PKU.WHXB202309031

    28. [28]

      Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046  doi: 10.1016/j.jmst.2021.11.046

    29. [29]

      Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 514. doi: 10.1007/s40843-023-2725-y  doi: 10.1007/s40843-023-2725-y

    30. [30]

      Song, P.; Du, J.; Ma, X.; Shi, Y.; Fang, X.; Liu, D.; Wei, S.; Liu, Z.; Cao, Y.; Lin, B.; et al. EcoEnergy 2023, 1, 197. doi: 10.1002/ece2.8  doi: 10.1002/ece2.8

    31. [31]

      Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009  doi: 10.1016/j.jmst.2023.05.009

    32. [32]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin J Catal. 2022, 43, 2652. doi: 10.1016/s1872-2067(22)64106-8  doi: 10.1016/s1872-2067(22)64106-8

    33. [33]

      Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    34. [34]

      Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi: 10.1016/s1872-2067(23)64607-8  doi: 10.1016/s1872-2067(23)64607-8

    35. [35]

      Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi: 10.1016/j.jmst.2024.02.012  doi: 10.1016/j.jmst.2024.02.012

    36. [36]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    37. [37]

      Dong, Y.; Wang, B.; Xie, D.; Lv, J.; Cui, J.; Bao, Z.; Xu, G.; Shen, W. EcoEnergy 2024, 2, 489. doi: 10.1002/ece2.54  doi: 10.1002/ece2.54

    38. [38]

      Xu, Q.-J.; Jiang, J.-W.; Wang, X.-F.; Duan, L.-Y.; Guo, H. Rare Met. 2023, 42, 1888. doi: 10.1007/s12598-022-02244-2  doi: 10.1007/s12598-022-02244-2

    39. [39]

      Xiao, Z.; Do, H.; Yusuf, A.; Jia, H.; Ma, H.; Jiang, S.; Li, J.; Sun, Y.; Wang, C.; Ren, Y.; et al. J. Hazard. Mater. 2024, 462, 132744. doi: 10.1016/j.jhazmat.2023.132744  doi: 10.1016/j.jhazmat.2023.132744

    40. [40]

      Wang, Y.; Bai, X.; Wang, F.; Kang, S.; Yin, C.; Li, X. J. Hazard. Mater. 2019, 372, 69. doi: 10.1016/j.jhazmat.2017.10.007  doi: 10.1016/j.jhazmat.2017.10.007

    41. [41]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi: 10.3866/PKU.WHXB202307016  doi: 10.3866/PKU.WHXB202307016

    42. [42]

      Wang, J.; Niu, X.; Hao, Q.; Zhang, K.; Shi, X.; Yang, L.; Yang, H. Y.; Ye, J.; Wu, Y. Chem. Eng. J. 2024, 493, 152534. doi: 10.1016/j.cej.2024.152534  doi: 10.1016/j.cej.2024.152534

    43. [43]

      Doustkhah, E.; Hassandoost, R.; Yousef Tizhoosh, N.; Esmat, M.; Guselnikova, O.; Hussein, N. A. M.; Khataee, A. Ultrason. Sonochem. 2023, 92, 106245. doi: 10.1016/j.ultsonch.2022.106245  doi: 10.1016/j.ultsonch.2022.106245

    44. [44]

      Choudhary, S.; Sahu, K.; Bisht, A.; Singhal, R.; Mohapatra, S. Appl. Surf. Sci. 2020, 503, 144102. doi: 10.1016/j.apsusc.2019.144102  doi: 10.1016/j.apsusc.2019.144102

    45. [45]

      Zhang, S.; Han, D.; Wang, Z.; Gu, F. Small 2024, 20, 2309656. doi: 10.1002/smll.202309656  doi: 10.1002/smll.202309656

    46. [46]

      Zou, W.; Shao, Y.; Pu, Y.; Luo, Y.; Sun, J.; Ma, K.; Tang, C.; Gao, F.; Dong, L. Appl. Catal. B: Envir. 2017, 218, 51. doi: 10.1016/j.apcatb.2017.03.085  doi: 10.1016/j.apcatb.2017.03.085

    47. [47]

      Guan, X.; Zhang, X.; Zhang, C.; Li, R.; Liu, J.; Wang, Y.; Wang, Y.; Fan, C.; Li, Z. Solar RRL. 2022, 6, 2200346. doi: 10.1002/solr.202200346  doi: 10.1002/solr.202200346

    48. [48]

      Zhu, L.; Li, H.; Xia, P.; Liu, Z.; Xiong, D. ACS Appl. Mater. Inter. 2018, 10, 39679. doi: 10.1021/acsami.8b13782  doi: 10.1021/acsami.8b13782

    49. [49]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/s1872-2067(23)64420-1  doi: 10.1016/s1872-2067(23)64420-1

    50. [50]

      Chen, L.; Wang, J.; Li, X.; Zhao, C.; Hu, X.; Wu, Y.; He, Y. Inorg. Chem. Front. 2022, 9, 2714. doi: 10.1039/d2qi00175f  doi: 10.1039/d2qi00175f

    51. [51]

      Wang, B.; Zhang, W.; Liu, G.; Chen, H.; Weng, Y. X.; Li, H.; Chu, P. K.; Xia, J. Adv. Funct. Mater. 2022, 32, 2202885. doi: 10.1002/adfm.202202885  doi: 10.1002/adfm.202202885

    52. [52]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    53. [53]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    54. [54]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    55. [55]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    56. [56]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi: 10.1016/s1872-2067(23)64514-0  doi: 10.1016/s1872-2067(23)64514-0

    57. [57]

      Ding, G.; Wang, Z.; Zhang, J.; Wang, P.; Chen, L.; Liao, G. EcoEnergy 2024, 2, 22. doi: 10.1002/ece2.25  doi: 10.1002/ece2.25

    58. [58]

      Yang, C.; Li, Q.; Xia, Y.; Lv, K.; Li, M. Appl. Surf. Sci. 2019, 464, 388. doi: 10.1016/j.apsusc.2018.09.099  doi: 10.1016/j.apsusc.2018.09.099

    59. [59]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6  doi: 10.1038/s41467-021-25007-6

    60. [60]

      Zhou, Z.; Yao, H.; Wu, Y.; Li, T.; Tsubaki, N.; Jin, Z. Acta Phys. -Chim. Sin. 2024, 40, 2312010. doi: 10.3866/PKU.WHXB202312010  doi: 10.3866/PKU.WHXB202312010

    61. [61]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    62. [62]

      Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin J. Catal. 2022, 43, 2539. doi: 10.1016/s1872-2067(21)64024-x  doi: 10.1016/s1872-2067(21)64024-x

    63. [63]

      Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2406460. doi: 10.1002/adma.202406460  doi: 10.1002/adma.202406460

    64. [64]

      Cheng, K.; Hua, J.; Zhang, J.; Shao, C.; Dawson, G.; Liu, Q.; Yin, D.; Dai, K. ACS Appl. Nano Mater. 2024, 7, 7978. doi: 10.1021/acsanm.4c00576  doi: 10.1021/acsanm.4c00576

    65. [65]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    66. [66]

      Huang, K.; Liang, G.; Sun, S.; Hu, H.; Peng, X.; Shen, R.; Li, X. J. Mater. Sci. Technol. 2024, 193, 98. doi: 10.1016/j.jmst.2024.01.034  doi: 10.1016/j.jmst.2024.01.034

    67. [67]

      Nie, C.; Wang, X.; Lu, P.; Zhu, Y.; Li, X.; Tang, H. J. Mater. Sci. Technol. 2024, 169, 182. doi: 10.1016/j.jmst.2023.06.011  doi: 10.1016/j.jmst.2023.06.011

    68. [68]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    69. [69]

      Huang, K.; Chen, D.; Zhang, X.; Shen, R.; Zhang, P.; Xu, D.; Li, X. Acta Phys. -Chim. Sin. 2024, 40, 2407020. doi: 10.3866/PKU.WHXB202407020  doi: 10.3866/PKU.WHXB202407020

  • 加载中
    1. [1]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    4. [4]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    5. [5]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    6. [6]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    8. [8]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    9. [9]

      Yanping QiuJiatong ZhangLinping LiYangqin GaoNing LiLei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175

    10. [10]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    12. [12]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    13. [13]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    14. [14]

      Zhen LiSujuan ZhangZhongliao WangJinfeng ZhangGaoli ChenShifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179

    15. [15]

      Jie GuoLijun XueFahui SongChengpeng LiZhuo ChenLili Wen . Dual built-in electric field-driven S-scheme heterojunction of D-A COFs/ZnIn2S4 for accelerated charge separation toward high-efficiency H2O2 photosynthesis in pure water. Acta Physico-Chimica Sinica, 2026, 42(4): 100177-0. doi: 10.1016/j.actphy.2025.100177

    16. [16]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    19. [19]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    20. [20]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(3)
  • Abstract views(621)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return