Citation: Xueting Cao, Shuangshuang Cha, Ming Gong. Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100041. doi: 10.1016/j.actphy.2024.100041 shu

Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications

  • Corresponding author: Ming Gong, gongm@fudan.edu.cn
  • Received Date: 25 October 2024
    Revised Date: 18 November 2024
    Accepted Date: 19 November 2024

    Fund Project: the National Natural Science Foundation of China 22172036the Fundamental Research Funds for the Central Universities 20720220011

  • The interfacial electrical double layer (EDL) is the interfacial space filled with a complex and dynamic reaction network forming by catalyst's surface atoms, reactants, intermediates, products, solvent molecules, ions, and other components. EDL has a profound impact on electrocatalytic reactions, affecting both the thermodynamics and kinetics of these processes. Manipulating the composition and structure of the EDL microenvironment sets an additional level of tuning toward the electrocatalysis, to the traditional catalyst optimization. It resembles the delicate manipulation of the environment around the active sites by protein scaffold in enzymes. However, the rational optimization of the EDL demands a deep understanding about its structure and dynamics. Problem lies in the complexities of interfacial EDL, which includes complicated multi-body interactions, few molecular-level characterization techniques, and scarce EDL modification strategies. In this tutorial, we delve into the intricacies of the interfacial EDL in electrocatalytic reactions, and seek to provide those who are new to this field a thorough summary of the theory, characterization, history, recent progresses within the regime of EDL for electrocatalysis. We begin by discussing the theoretical models that describe the structure and properties of EDL, including 4 classical EDL models, their applications in electrocatalytic analysis and modifications, and relevant calculation modulation methods. These models are arranged in the chronical order, such that a historical summary of how the EDL theory evolves from simple models to complicated details is provided. We then provide an overview of cutting-edge techniques in electrochemical measurement methods, in situ spectroscopic characterization techniques and scanning probe microscopy methods. Specifically, we aim to summarize the advantages and disadvantages of each technique, with an emphasis on their capability of probing the EDL region. The summary table can provide junior students a quick overview and a useful tool for selecting the appropriate techniques toward addressing the EDL properties for electrocatalysis. Furthermore, by combining the theory and characterization techniques, we list several pivotal studies from the past five years emphasizing on the "electrode side interfacial modification" approach and "solution side interfacial modification" approach, toward modulating the EDL to optimize the electrocatalytic properties. These examples not only show the recent progresses in this field and offer fundamental details about how researchers in this field address the problems from the aspect of EDL. With these combined theory, characterization and research samples, we hope that the new-comings can gain interest to this field, sense the enormous opportunities and understand the general principles of EDL toward electrocatalysis.
  • 加载中
    1. [1]

      Shao, Y. Y.; Markovic, N. M. Nano Energy 2016, 29, 1. doi: 10.1016/j.nanoen.2016.09.025  doi: 10.1016/j.nanoen.2016.09.025

    2. [2]

      Steinmann, S. N.; Seh, Z. W. Nat. Rev. Mater. 2021, 6 (4), 289. doi: 10.1038/s41578-021-00303-1  doi: 10.1038/s41578-021-00303-1

    3. [3]

      Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 771–775.

    4. [4]

      Xu, Y. F.; Yang, H.; Chang, X. X.; Xu, B. J. Acta Phys. -Chim. Sin. 2023, 39, 2210025.  doi: 10.3866/PKU.WHXB202210025

    5. [5]

      Elliott, J. D.; Papaderakis, A. A.; Dryfe, R. A. W.; Carbone, P. J. Mater. Chem. C 2022, 10 (41), 15225. doi: 10.1039/D2TC01631A  doi: 10.1039/D2TC01631A

    6. [6]

      Ivanov, V. D. J. Solid State Electrochem. 2024, 28, 2487. doi: 10.1007/s10008-024-05850-5  doi: 10.1007/s10008-024-05850-5

    7. [7]

      Gouy, G. J. Physique 1910, 9, 457. doi: 10.1051/jphystap:019100090045700  doi: 10.1051/jphystap:019100090045700

    8. [8]

      Chapman, D. L. Phil. Mag. 1913, 25, 475. doi: 10.1080/14786440408634187  doi: 10.1080/14786440408634187

    9. [9]

      Stern, H. O. Z. Electrochem. 1924, 30, 508. doi: 10.1002/bbpc.192400182  doi: 10.1002/bbpc.192400182

    10. [10]

      Grahame, D. C. Chem. Rev. 1947, 41 (3), 441. doi: 10.1021/cr60130a002  doi: 10.1021/cr60130a002

    11. [11]

      Hou, J. J.; Xu, B. J.; Lu, Q. Nat. Commun. 2024, 15 (1), 1926. doi: 10.1038/s41467-024-46318-4  doi: 10.1038/s41467-024-46318-4

    12. [12]

      Boettcher, S. W.; Surendranath, Y. Nat. Catal. 2021, 4 (1), 4. doi: 10.1038/s41929-020-00570-1  doi: 10.1038/s41929-020-00570-1

    13. [13]

      Lyu, D. Y.; Xu, J. C.; Wang, Z. Y. Front. Chem. 2023, 11, 1231886. doi: 10.3389/fchem.2023.1231886  doi: 10.3389/fchem.2023.1231886

    14. [14]

      Fawcett, W. R. J. Solid State Electrochem. 2011, 15 (7–8), 1347. doi: 10.1007/s10008-011-1337-4  doi: 10.1007/s10008-011-1337-4

    15. [15]

      Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J. H. Surf. Sci. 1969, 18 (1), 44. doi: 10.1016/0039-6028(69)90266-0  doi: 10.1016/0039-6028(69)90266-0

    16. [16]

      Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 933–959, 1190–1201.

    17. [17]

      Chen, S.; Liu, Y.; Chen, J. Chem. Soc. Rev. 2014, 43 (15), 5372. doi: 10.1039/C4CS00087K  doi: 10.1039/C4CS00087K

    18. [18]

      Wu, J. X.; Wang, R.; Kang, Y. K.; Li, J. L.; Hao, Y. M.; Li, Y. F.; Liu, Z. P.; Gong, M. Angew Chem. Int, Ed. 2024, 63 (22), e202403466. doi: 10.1002/anie.202403466  doi: 10.1002/anie.202403466

    19. [19]

      Bikerman J. J. Lond. Edinb. Phil. Mag. 1942, 33 (220), 384. doi: 10.1080/14786444208520813  doi: 10.1080/14786444208520813

    20. [20]

      Webb, T. J. J. Am. Chem. Soc. 1926, 48 (10), 2589. doi: 10.1021/ja01421a013  doi: 10.1021/ja01421a013

    21. [21]

      Conway, B. E.; Bockris, J. O'. M.; Ammar, I. A. Trans. Faraday Soc. 1951, 47, 756. doi: 10.1039/tf9514700756  doi: 10.1039/tf9514700756

    22. [22]

      Bockris, J. O'. M.; Devanathan, M. A. V.; Müller, K.; Butler, J. A. V. Proc. R. Soc. Lond. A 1963, 274 (1356), 55. doi: 10.1098/rspa.1963.0114  doi: 10.1098/rspa.1963.0114

    23. [23]

      Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 895–919.

    24. [24]

      Li, P.; Jiang, Y. L.; Hu, Y. C.; Men, Y. N.; Liu, Y. W.; Cai, W. B.; Chen, S. L. Nat. Catal. 2022, 5 (10), 900. doi: 10.1038/s41929-022-00846-8  doi: 10.1038/s41929-022-00846-8

    25. [25]

      Gonella, G.; Backus, E. H. G.; Nagata, Y.; Bonthuis, D. J.; Loche, P.; Schlaich, A.; Netz, R. R.; Kühnle, A.; McCrum, I. T.; Koper, M. T. M.; et al. Nat. Rev. Chem. 2021, 5 (7), 466. doi: 10.1038/s41570-021-00293-2  doi: 10.1038/s41570-021-00293-2

    26. [26]

      Wang, Q.; Qu, Z. G.; Tian, D. Adv. Energy Mater. 2024, 2402974. doi: 10.1002/aenm.202402974  doi: 10.1002/aenm.202402974

    27. [27]

      Zhang, L. L.; Li, C. K.; Huang, J. J. Electrochem. 2022, 28 (2), 2108471.  doi: 10.13208/j.electrochem.210847

    28. [28]

      Horng, T. L.; Tsai, P. H.; Lin, T. C. Comput. Math. Biophys. 2017, 5 (1), 142. doi: 10.1515/mlbmb-2017-0010  doi: 10.1515/mlbmb-2017-0010

    29. [29]

      Blum, L. Mol. Phys. 1975, 30 (5), 1529. doi: 10.1080/00268977500103051  doi: 10.1080/00268977500103051

    30. [30]

      Outhwaite, C. W.; Bhuiyan, L. B.; Levine, S. J. Chem. Soc. Faraday Trans. 2 1980, 76, 1388. doi: 10.1039/F29807601388  doi: 10.1039/F29807601388

    31. [31]

      Lück, J.; Latz, A. Phys. Chem. Chem. Phys. 2018, 20 (44), 27804. doi: 10.1039/C8CP05113E  doi: 10.1039/C8CP05113E

    32. [32]

      Drude, P. Ann. Phys. 1900, 306, 566. doi: 10.1002/andp.19003060312  doi: 10.1002/andp.19003060312

    33. [33]

      Schmickler, W.; Henderson, D. J. Chem. Phys. 1984, 80 (7), 3381. doi: 10.1063/1.447092  doi: 10.1063/1.447092

    34. [34]

      Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 919–968.

    35. [35]

      Petrii, O. A. Electrochim. Acta 1996, 41 (14), 2307. doi: 10.1016/0013-4686(96)00060-6  doi: 10.1016/0013-4686(96)00060-6

    36. [36]

      Wang, Z. Y.; Chen, J.; Ni, C. W.; Nie, W.; Li, D. F.; Ta, N.; Zhang, D. Y.; Sun, Y. M.; Sun, F. S.; Li, Q.; et al. Natl. Sci. Rev. 2023, 10 (9), nwad166. doi: 10.1093/nsr/nwad166  doi: 10.1093/nsr/nwad166

    37. [37]

      Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313 (5794), 1760. doi: 10.1126/science.1132195  doi: 10.1126/science.1132195

    38. [38]

      Schmickler, W. J. Solid State Electrochem. 2020, 24 (9), 2175. doi: 10.1007/s10008-020-04597-z  doi: 10.1007/s10008-020-04597-z

    39. [39]

      Fang, Y. H.; Liu, Z. P. Chin. J. Catal. 2019, 40 (s1), 90.

    40. [40]

      Fang, Y. H.; Liu, Z. P. J. Electrochem. 2020, 26 (1), 32.  doi: 10.13208/j.electrochem.181243

    41. [41]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108 (46), 17886. doi: 10.1021/jp047349j  doi: 10.1021/jp047349j

    42. [42]

      Masood, Z.; Ge, Q. F. J. Phys. Chem. C 2023, 127 (48), 23170. doi: 10.1021/acs.jpcc.3c03796  doi: 10.1021/acs.jpcc.3c03796

    43. [43]

      Zhang, X.; Zhou, Z. J. Phys. Chem. C 2022, 126 (8), 3820. doi: 10.1021/acs.jpcc.1c10870  doi: 10.1021/acs.jpcc.1c10870

    44. [44]

      Hu, X.; Chen, S.; Chen, L.; Tian, Y.; Yao, S.; Lu, Z.; Zhang, X.; Zhou, Z. J. Am. Chem. Soc. 2022, 144 (39), 18144. doi: 10.1021/jacs.2c08743  doi: 10.1021/jacs.2c08743

    45. [45]

      Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6 (14), 2663. doi: 10.1021/acs.jpclett.5b01043  doi: 10.1021/acs.jpclett.5b01043

    46. [46]

      Jaugstetter, M.; Blanc, N.; Kratz, M.; Tschulik, K. Chem. Soc. Rev. 2022, 51 (7), 2491. doi: 10.1039/D1CS00789K  doi: 10.1039/D1CS00789K

    47. [47]

      Zhang, D.; Li, Hao. J. Mater. Chem. A, 2024, 12, 13742. doi: 10.1039/D4TA02285H  doi: 10.1039/D4TA02285H

    48. [48]

      Li, P.; Jiao. Y. Z.; Huang, J.; Chen, S. L. JACS Au 2023, 3 (10), 2640. doi: 10.1021/jacsau.3c00410  doi: 10.1021/jacsau.3c00410

    49. [49]

      Hu, X.; Yao, S.; Chen, L. T.; Zhang, X.; Jiao, M. G.; Lu, Z. Y; Zhou, Z. J. Mater. Chem. A 2021, 9, 23515. doi: 10.1039/D1TA07791K  doi: 10.1039/D1TA07791K

    50. [50]

      Agrawal, A.; Choudhary, A. APL Mater. 2016, 4 (5), 053208. doi: 10.1063/1.4946894  doi: 10.1063/1.4946894

    51. [51]

      Huang, S. D.; Shang, C.; Kang, P. L.; Zhang, X. J.; Liu, Z. P. WIREs Comput. Mol. Sci. 2019, 9, e1415. doi: 10.1002/wcms.1415  doi: 10.1002/wcms.1415

    52. [52]

      Naserifar, S.; Chen, Y. L.; Kwon, S.; Xiao, H.; Goddard, W. A. Matter 2021, 4 (1), 195. doi: 10.1016/j.matt.2020.11.010  doi: 10.1016/j.matt.2020.11.010

    53. [53]

      Schlüter, N.; Novák, P.; Schröder, D. Adv. Energy Mater. 2022, 12 (21), 2200708. doi: 10.1002/aenm.202200708  doi: 10.1002/aenm.202200708

    54. [54]

      Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; pp. 156–417.

    55. [55]

      Zhang, J. Q. Electrochemical Measurement Technology, 1st ed.; Chemical Industry Press: Beijing, 2010; pp. 73–300.

    56. [56]

      Scholz, F. ChemTexts 2015, 1 (4), 17. doi: 10.1007/s40828-015-0016-y  doi: 10.1007/s40828-015-0016-y

    57. [57]

      Bockris, J. O'. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 859–869.

    58. [58]

      Beck, T. R. J. Phys. Chem. 1969, 73 (2), 466. doi: 10.1021/j100722a045  doi: 10.1021/j100722a045

    59. [59]

      Fredlein, R. A.; Damjanovic, A.; Bockris, J. O'. M. Surf. Sci. 1971, 25 (2), 261. doi: 10.1016/0039-6028(71)90246-9  doi: 10.1016/0039-6028(71)90246-9

    60. [60]

      Hamm, U. W.; Kramer, D.; Zhai, R. S.; Kolb, D. M. J. Electroanal. Chem. 1996, 414 (1), 85. doi: 10.1016/0022-0728(96)01006-6  doi: 10.1016/0022-0728(96)01006-6

    61. [61]

      Bond, A. M.; Duffy, N. W.; Guo, S. X.; Zhang, J.; Elton, D. Anal. Chem. 2005, 77 (9), 186 A. doi: 10.1021/ac053370k  doi: 10.1021/ac053370k

    62. [62]

      Lucio, A. J.; Shaw, S. K.; Zhang, J.; Bond, A. M. J. Phys. Chem. C 2018, 122 (22), 11777. doi: 10.1021/acs.jpcc.8b00272  doi: 10.1021/acs.jpcc.8b00272

    63. [63]

      Ojha, K.; Arulmozhi, N.; Aranzales, D.; Koper, M. T. M. Angew. Chem. Int. Ed. 2020, 59 (2), 711. doi: 10.1002/anie.201911929  doi: 10.1002/anie.201911929

    64. [64]

      Lertanantawong, B.; O'Mullane, A. P.; Surareungchai, W.; Somasundrum, M.; Burke, L. D.; Bond, A. M. Langmuir 2008, 24 (6), 2856. doi: 10.1021/la702454k  doi: 10.1021/la702454k

    65. [65]

      Lucio, A. J.; Shaw, S. K.; Zhang, J.; Bond, A. M. J. Phys. Chem. C 2017, 121 (22), 12136. doi: 10.1021/acs.jpcc.7b00287  doi: 10.1021/acs.jpcc.7b00287

    66. [66]

      Pettit, C. M.; Goonetilleke, P. C.; Roy, D. J. Electroanal. Chem. 2006, 589 (2), 219. doi: 10.1016/j.jelechem.2006.02.012  doi: 10.1016/j.jelechem.2006.02.012

    67. [67]

      Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; pp. 537–544.

    68. [68]

      Tymoczko, J.; Colic, V.; Bandarenka, A. S.; Schuhmann, W. Surf. Sci. 2015, 631, 81. doi: 10.1016/j.susc.2014.04.014  doi: 10.1016/j.susc.2014.04.014

    69. [69]

      Yun, C.; Hwang, S. Int. J. Electrochem. Sci. 2021, 16 (3), 210355. doi: 10.20964/2021.03.50  doi: 10.20964/2021.03.50

    70. [70]

      Bandarenka, A. S. Analyst 2013, 138 (19), 5540. doi: 10.1039/C3AN00791J  doi: 10.1039/C3AN00791J

    71. [71]

      Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X.; Krumov, M.; Huang, X.; Xu, W.; Wang, H.; DiSalvo, F. J.; Brock, Joel. D.; et al. ACS Catal. 2021, 11 (3), 1136. doi: 10.1021/acscatal.0c04789  doi: 10.1021/acscatal.0c04789

    72. [72]

      Ji, Y.; Yin, Z. W.; Yang, Z.; Deng, Y. P.; Chen, H.; Lin, C.; Yang, L.; Yang, K.; Zhang, M.; Xiao, Q.; et al. Chem. Soc. Rev. 2021, 50 (19), 10743. doi: 10.1039/D1CS00629K  doi: 10.1039/D1CS00629K

    73. [73]

      Łukaszewski, M.; Siwek, H.; Czerwiński, A. J. Solid State Electrochem. 2010, 14 (7), 1279. doi: 10.1007/s10008-009-0926-y  doi: 10.1007/s10008-009-0926-y

    74. [74]

      Bockris, J. O.; Gamboa-Aldeco, M.; Szklarczyk, M. J. Electroanal. Chem. 1992, 339 (1), 355. doi: 10.1016/0022-0728(92)80463-E  doi: 10.1016/0022-0728(92)80463-E

    75. [75]

      Su, H. S.; Chang, X. X.; Xu, B. J. Chinese J. Catal. 2022, 43 (11), 2757. doi: 10.1016/S1872-2067(22)64157-3  doi: 10.1016/S1872-2067(22)64157-3

    76. [76]

      Jiang, Z.; Zhang, Q.; Liang, Z. X.; Chen, J. G. G. Appl. Catal. B Environ. 2018, 234, 329. doi: 10.1016/j.apcatb.2018.04.052  doi: 10.1016/j.apcatb.2018.04.052

    77. [77]

      Zhu, S. Q; Jiang, B.; Cai, W. B.; Shao, M. H. J. Am. Chem. Soc. 2017, 139 (44), 15664. doi: 10.1021/jacs.7b10462  doi: 10.1021/jacs.7b10462

    78. [78]

      Sun, Q.; Oliveira, N. J.; Kwon, S.; Tyukhtenko, S.; Guo, J. J.; Myrthil, N.; Lopez, S. A.; Kendrick, I.; Mukerjee, S.; Ma, L.; et al. Nat. Energy 2023, 8 (8), 859. doi: 10.1038/s41560-023-01302-y  doi: 10.1038/s41560-023-01302-y

    79. [79]

      Wu, J. X.; Li, J. L.; Li, Y. F.; Ma, X. Y.; Zhang, W. Y.; Hao, Y. M.; Cai, W. B.; Liu, Z. P.; Gong, M. Angew. Chem. Int. Ed. 2022, 61 (11), e202113362. doi: 10.1002/anie.202113362  doi: 10.1002/anie.202113362

    80. [80]

      Yang, K. L.; Kas, R.; Smith, W. A. J. Am. Chem. Soc. 2019, 141 (40), 15891. doi: 10.1021/jacs.9b07000.  doi: 10.1021/jacs.9b07000

    81. [81]

      Wang, H.; Jiang, B.; Zhao, T. T.; Jiang, K.; Yang, Y. Y.; Zhang, J. W.; Xie, Z. X.; Cai, W. B. ACS Catal. 2017, 7, 2033. doi: 10.1021/acscatal.6b03108  doi: 10.1021/acscatal.6b03108

    82. [82]

      Liu, T.; Chen, Y. X.; Hao, Y. M.; Wu, J. X.; Wang, R.; Gu, L. M.; Yang, X. J.; Yang, Q.; Lian, C.; Liu, H. L.; Gong, M. Chem 2022, 8 (10), 2700. doi: 10.1016/j.chempr.2022.06.012  doi: 10.1016/j.chempr.2022.06.012

    83. [83]

      Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; et al. Nature 2010, 464 (7287), 392. doi: 10.1038/nature08907  doi: 10.1038/nature08907

    84. [84]

      Cho, K. H.; Park, S.; Seo, H.; Choi, S.; Lee, M. Y.; Ko, C.; Nam, K. T. Angew. Chem. Int. Ed. 2021, 60, 4673. doi: 10.1002/anie.202014551  doi: 10.1002/anie.202014551

    85. [85]

      Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. L.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. J. Am. Chem. Soc. 2021, 143, 1493. doi: 10.1021/jacs.0c11307  doi: 10.1021/jacs.0c11307

    86. [86]

      Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. J. Am. Chem. Soc. 2020, 142, 11901. doi: 10.1021/jacs.0c04867  doi: 10.1021/jacs.0c04867

    87. [87]

      Xu, Z. Z.; Liang, Z. B.; Guo, W. H.; Zou, R. Q. Coordin. Chem. Rev. 2021, 436, 213824. doi: 10.1016/j.ccr.2021.213824  doi: 10.1016/j.ccr.2021.213824

    88. [88]

      Wang, Y. H.; Zheng, S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S.; Zheng, J.; Yang, Z. L.; et al. Nature 2021, 600 (7887), 81. doi: 10.1038/s41586-021-04068-z  doi: 10.1038/s41586-021-04068-z

    89. [89]

      Bhattacharyya, D.; E. Videla, P.; Cattaneo, M.; S. Batista, V.; Lian, T.; P. Kubiak, C. Chem. Sci. 2021, 12 (30), 10131. doi: 10.1039/D1SC01876K  doi: 10.1039/D1SC01876K

    90. [90]

      Chang, X. X.; Xiong, H. C.; Xu, Y. F.; Zhao, Y. R.; Xu, B. J. Catal. Sci. Technol. , 2021, 11, 6825. doi: 10.1039/D1CY01090E  doi: 10.1039/D1CY01090E

    91. [91]

      Yang, L. J.; Zhang, W. K.; Bian, H. T.; Ma, G. Biointerphases 2022, 17 (5), 051201. doi: 10.1116/6.0002007  doi: 10.1116/6.0002007

    92. [92]

      Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Angew. Chem. Int. Ed. 2019, 58 (44), 15895. doi: 10.1002/anie.201908722  doi: 10.1002/anie.201908722

    93. [93]

      Ge, A.; Rudshteyn, B.; Videla, P. E.; Miller, C. J.; Kubiak, C. P.; Batista, V. S.; Lian, T. Q. Acc. Chem. Res. 2019, 52 (5), 1289. doi: 10.1021/acs.accounts.9b00001  doi: 10.1021/acs.accounts.9b00001

    94. [94]

      Bhattacharyya, D.; Videla, P. E.; Palasz, J. M.; Tangen, I.; Meng, J. H.; Kubiak, C. P.; Batista, V. S.; Lian, T. Q. J. Am. Chem. Soc. 2022, 144 (31), 14330. doi: 10.1021/jacs.2c05563  doi: 10.1021/jacs.2c05563

    95. [95]

      Xu, P. T.; von Rueden, A. D.; Schimmenti, R.; Mavrikakis, M.; Suntivich, J. Nat. Mater. 2023, 22 (4), 503. doi: 10.1038/s41563-023-01474-8  doi: 10.1038/s41563-023-01474-8

    96. [96]

      Harlow, G. S.; Lundgren, E.; Escudero-Escribano, M. Curr. Opin. Electrochem. 2020, 23, 162. doi: 10.1016/j.coelec.2020.08.005  doi: 10.1016/j.coelec.2020.08.005

    97. [97]

      Hung, S. F. Pure Appl. Chem. 2020, 92 (5), 733. doi: 10.1515/pac-2019-1006  doi: 10.1515/pac-2019-1006

    98. [98]

      Favaro, M.; Jeong, B.; Ross, P. N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E. J. Nat. Commun. 2016, 7 (1), 12695. doi: 10.1038/ncomms12695  doi: 10.1038/ncomms12695

    99. [99]

      Wang, Y. Q.; Skaanvik, S. A.; Xiong, X. Y.; Wang, S. Y.; Dong, M. D. Matter 2021, 4 (11), 3483. doi: 10.1016/j.matt.2021.09.024  doi: 10.1016/j.matt.2021.09.024

    100. [100]

      Santos, C. S.; Jaato, B. N.; Sanjuán, I.; Schuhmann, W.; Andronescu, C. Chem. Rev. 2023, 123 (8), 4972. doi: 10.1021/acs.chemrev.2c00766  doi: 10.1021/acs.chemrev.2c00766

    101. [101]

      Liang, Y. C.; Pfisterer, J. H. K.; McLaughlin, D.; Csoklich, C.; Seidl, L.; Bandarenka, A. S.; Schneider, O. Small Methods 2019, 3 (8), 1800387. doi: 10.1002/smtd.201800387  doi: 10.1002/smtd.201800387

    102. [102]

      Bae, S. E.; Stewart, K. L.; Gewirth, A. A. J. Am. Chem. Soc. 2007, 129 (33), 10171. doi: 10.1021/ja071330n  doi: 10.1021/ja071330n

    103. [103]

      Tong, L.; Yu, Z.; Gao, Y. J.; Li, X. C.; Zheng, J. F.; Shao, Y.; Wang, Y. H.; Zhou, X. S. Nat. Commun. 2023, 14 (1), 3397. doi: 10.1038/s41467-023-39206-w  doi: 10.1038/s41467-023-39206-w

    104. [104]

      Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Chem. Rev. 2016, 116 (22), 13234. doi: 10.1021/acs.chemrev.6b00067  doi: 10.1021/acs.chemrev.6b00067

    105. [105]

      Barman, K.; Askarova, G.; Jia, R.; Hu, G. X.; Mirkin, M. V. J. Am. Chem. Soc. 2023, 145 (10), 5786. doi: 10.1021/jacs.2c12775  doi: 10.1021/jacs.2c12775

    106. [106]

      Monteiro, M. C. O.; Jacobse, L.; Touzalin, T.; Koper, M. T. M. Anal. Chem. 2020, 92 (2), 2237. doi: 10.1021/acs.analchem.9b04952  doi: 10.1021/acs.analchem.9b04952

    107. [107]

      Kim, D.; Yu, S.; Zheng, F.; Roh, I.; Li, Y. F.; Louisia, S.; Qi, Z. Y.; Somorjai, G. A.; Frei, H.; Wang, L. W. W.; et al. Nat. Energy 2020, 5 (12), 1032. doi: 10.1038/s41560-020-00730-4  doi: 10.1038/s41560-020-00730-4

    108. [108]

      Wu, Q. B.; Liang, J. W.; Xiao, M. J.; Long, C.; Li, L.; Zeng, Z. H.; Mavrič, A.; Zheng, X.; Zhu, J.; Liang, H. W.; et al. Nat. Commun. 2023, 14 (1), 997. doi: 10.1038/s41467-023-36718-3  doi: 10.1038/s41467-023-36718-3

    109. [109]

      Lim, C. Y. J.; Yilmaz, M.; Arce-Ramos, J. M.; Handoko, A. D.; Teh, W. J.; Zheng, Y.; Khoo, Z. H. J.; Lin, M.; Isaacs, M.; Tam, T. L. D.; et al. Nat. Commun. 2023, 14 (1), 335. doi: 10.1038/s41467-023-35912-7  doi: 10.1038/s41467-023-35912-7

    110. [110]

      Wang, T.; Zhang, Y. R.; Huang, B. T.; Cai, B.; Rao, R. R.; Giordano, L.; Sun, S. G.; Shao-Horn, Y. Nat. Catal. 2021, 4 (9), 753. doi: 10.1038/s41929-021-00668-0  doi: 10.1038/s41929-021-00668-0

    111. [111]

      Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F.; et al. Adv. Mater. 2022, 34 (18), 2200270. doi: 10.1002/adma.202200270  doi: 10.1002/adma.202200270

    112. [112]

      Li, F. W.; Li, Y. G. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F.; et al. Nat. Catal. 2020, 3 (1), 75. doi: 10.1038/s41929-019-0383-7  doi: 10.1038/s41929-019-0383-7

    113. [113]

      Omura, J.; Yano, H.; Watanabe, M.; Uchida, H. Langmuir 2011, 27 (10), 6464. doi: 10.1021/la200694a  doi: 10.1021/la200694a

    114. [114]

      Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Nat. Catal. 2021, 4 (8), 654. doi: 10.1038/s41929-021-00655-5  doi: 10.1038/s41929-021-00655-5

    115. [115]

      Monteiro, M. C. O.; Dattila, F.; López, N.; Koper, M. T. M. J. Am. Chem. Soc. 2022, 144 (4), 1589. doi: 10.1021/jacs.1c10171  doi: 10.1021/jacs.1c10171

    116. [116]

      Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K. Energy Environ. Sci. 2019, 12 (10), 3001. doi: 10.1039/C9EE01341E  doi: 10.1039/C9EE01341E

    117. [117]

      Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. J. Am. Chem. Soc. 2017, 139 (32), 11277. doi: 10.1021/jacs.7b06765  doi: 10.1021/jacs.7b06765

    118. [118]

      Malkani, A. S.; Li, J.; Oliveira, N. J.; He, M.; Chang, X.; Xu, B.; Lu, Q. Sci. Adv. 2020, 6 (45), eabd2569. doi: 10.1126/sciadv.abd2569  doi: 10.1126/sciadv.abd2569

    119. [119]

      Zhao, Y.; Xu, J. P.; Huang, K.; Ge, W. X.; Liu, Z.; Lian, C.; Liu, H. L.; Jiang, H. L.; Li, C. Z. J. Am. Chem. Soc. 2023, 145 (11), 6516. doi: 10.1021/jacs.3c00565  doi: 10.1021/jacs.3c00565

    120. [120]

      Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Nat. Mater. 2020, 19 (3), 266. doi: 10.1038/s41563-020-0610-2  doi: 10.1038/s41563-020-0610-2

  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    6. [6]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    7. [7]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    8. [8]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    9. [9]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    10. [10]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    11. [11]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    18. [18]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    19. [19]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    20. [20]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

Metrics
  • PDF Downloads(3)
  • Abstract views(263)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return