Citation: Lingbang Qiu, Jiangmin Jiang, Libo Wang, Lang Bai, Fei Zhou, Gaoyu Zhou, Quanchao Zhuang, Yanhua Cui. In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100040. doi: 10.1016/j.actphy.2024.100040 shu

In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries

  • Corresponding author: Jiangmin Jiang, jiangmin326@163.com Quanchao Zhuang, zhuangquanchao@126.com Yanhua Cui, cuiyanhua@netease.com
  • Received Date: 5 November 2024
    Revised Date: 6 December 2024
    Accepted Date: 6 December 2024

    Fund Project: the National Natural Science Foundation of China U2030206the National Natural Science Foundation of China 22209204the Natural Science Foundation of Jiangsu Province BK20221140

  • As a primary energy storage device, the thermal battery offers advantages such as high specific energy and high-power density. However, developing new cathode materials with high specific capacity and thermal stability to meet the evolving needs of thermal batteries remains a significant challenge. Moreover, the high discharge temperatures of thermal batteries and the instability of the molten salt electrolyte system complicate the electrochemical in situ characterization of these systems. In this context, in situ electrochemical impedance spectroscopy (EIS) has become widely employed in electrochemistry and represents a promising technique for in situ monitoring of thermal battery systems. Niobium-tungsten oxides, which possess a Wadsley-Roth crystal shear structure, exhibit excellent rate capability and cyclic stability as anode materials for lithium-ion batteries. Among them, Nb12WO33 demonstrates remarkable lithium storage performance due to its unique 3D tunneling structure, which provides rapid de-intercalation channels for Li+ ions. Given its excellent thermal and electrochemical stability, this study proposes the use of Nb12WO33 as a cathode material for thermal batteries for the first time. Electrochemical impedance spectroscopy (EIS) at room temperature was employed to investigate the variations in the material's internal electronic conductivity impedance. The EIS Nyquist plots of the Nb12WO33 electrode reveal a distinctive phenomenon of three semicircles in the high- and mid-frequency regions within the operating potential range. This behavior is primarily attributed to the electron conduction within the Nb12WO33 electrode. The resistance associated with electronic conduction (RE) exhibits a pattern of initial increase followed by a decrease. This phenomenon is explained by the valence transition of the Nb element from +5 to +4 occurring around 1.7 V. This step is more facile than the subsequent steps at 2.0 V and 1.2 V, resulting in the generation of a larger number of metastable electrons. Consequently, the internal channels become populated with electrons, leading to a significant increase in RE. The thermal battery constructed with Nb12WO33 as the cathode material was discharged at 500 ℃ and a current density of 500 mA·g−1 (with a cut-off voltage of 1.5 V), achieving a high specific capacity of 436.8 mAh·g−1 and an average polarized internal resistance of 0.52 Ω during pulse discharge. Therefore, Nb12WO33 holds great potential as a cathode material for high-capacity, thermally stable thermal batteries. This study paves the way for the use of other niobium-tungsten oxides as cathode materials for thermal batteries and establishes a precedent for in situ EIS testing and analysis of thermal battery systems.
  • 加载中
    1. [1]

      Li, R.; Guo, W.; Qian, Y. J. Front. Chem. 2022, 10, 832972. doi: 10.3389/fchem.2022.832972  doi: 10.3389/fchem.2022.832972

    2. [2]

      Masset, P.; Guidotti, R. A. J. Power Sources 2007, 164 (1), 397. doi: 10.1016/j.jpowsour.2006.10.080  doi: 10.1016/j.jpowsour.2006.10.080

    3. [3]

      Choi, Y.; Cho, S.; Lee, Y.-S. J. Ind. Eng. Chem. 2014, 20 (5), 3584. doi: 10.1016/j.jiec.2013.12.052  doi: 10.1016/j.jiec.2013.12.052

    4. [4]

      Meng, X.; Liu, H.; Bi, S.; Fan, S.; Cao, L.; Yi, T.; Li, X. J. Energy Storage 2024, 78, 109905. doi: 10.1016/j.est.2023.109905  doi: 10.1016/j.est.2023.109905

    5. [5]

      Masset, P. J.; Guidotti, R. A. J. Power Sources 2008, 177 (2), 595. doi: 10.1016/j.jpowsour.2007.11.017  doi: 10.1016/j.jpowsour.2007.11.017

    6. [6]

      Jin, C.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Mater. Chem. A 2018, 6 (16), 7123. doi: 10.1039/c8ta00346g  doi: 10.1039/c8ta00346g

    7. [7]

      Ko, J.; Kang, S.; Cheong, H.-W.; Yoon, Y.-S. J. Korean Ceram. Soc. 2019, 56 (3), 233. doi: 10.4191/kcers.2019.56.3.05  doi: 10.4191/kcers.2019.56.3.05

    8. [8]

      Giagloglou, K.; Payne, J. L.; Crouch, C.; Gover, R. K.; Connor, P. A.; Irvine, J. T. J. Electrochem. Soc. 2018, 165 (14), A3510. doi: 10.1149/2.1231814jes  doi: 10.1149/2.1231814jes

    9. [9]

      Jin, C.; Fu, L.; Ge, B.; Pu, X.; Li, W.; Zhou, L. J. Alloy. Compd. 2019, 800, 518. doi: 10.1016/j.jallcom.2019.06.128  doi: 10.1016/j.jallcom.2019.06.128

    10. [10]

      Liao, Z.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Power Sources 2020, 463, 228237. doi: 10.1016/j.jpowsour.2020.228237  doi: 10.1016/j.jpowsour.2020.228237

    11. [11]

      Luo, Z.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Power Sources 2020, 448, 227569. doi: 10.1016/j.jpowsour.2019.227569  doi: 10.1016/j.jpowsour.2019.227569

    12. [12]

      Guo, S. N.; Guo, H.; Wang, X.; Zhu, Y.; Hu, J.; Yang, M.; Zhao, L.; Wang, J. J. Electrochem. Soc. 2019, 166 (15), A3599. doi: 10.1149/2.0371915jes  doi: 10.1149/2.0371915jes

    13. [13]

      Xu, C.; Jin, C.; Wang, X.; Gong, X.; Yin, J.; Zhao, L.; Pu, X.; Li, W. Electrochim. Acta 2022, 401, 139496. doi: 10.1016/j.electacta.2021.139496  doi: 10.1016/j.electacta.2021.139496

    14. [14]

      Hillel, T.; Ein-Eli, Y. J. Power Sources 2013, 229, 112. doi: 10.1016/j.jpowsour.2012.11.128  doi: 10.1016/j.jpowsour.2012.11.128

    15. [15]

      Yang, Y.; Zhao, J. Adv. Sci. 2021, 8, 2004855. doi: 10.1002/advs.202004855  doi: 10.1002/advs.202004855

    16. [16]

      Roth, R. S.; Waring, J. L. J. Res. Natl. Bur. Stand. A Phys. Chem. 1966, 70A (4), 281. doi: 10.6028/jres.070A.025  doi: 10.6028/jres.070A.025

    17. [17]

      Cava, R. J.; Murphy, D. W.; Zahurak, S. M. J. Electrochem. Soc. 1983, 130 (12), 2345. doi: 10.1149/1.2119583  doi: 10.1149/1.2119583

    18. [18]

      Roth, R. S.; Wadsley, A. D. Acta Crystallogr. A 1965, 19 (1), 32. doi: 10.1107/S0365110X65002724  doi: 10.1107/S0365110X65002724

    19. [19]

      Roth, R. S.; Wadsley, A. D. Acta Crystallogr. A 1965, 19 (1), 38. doi: 10.1107/S0365110X65002736  doi: 10.1107/S0365110X65002736

    20. [20]

      Shen, C.; Jiang, S. N.; Ding, C. M.; Xue, W. S.; Xie, K. Y. T. Nonferr. Metal. Soc. 2022, 32 (11), 3679. doi: 10.1016/S1003-6326(22)66048-5  doi: 10.1016/S1003-6326(22)66048-5

    21. [21]

      Stephenson, N. C. Acta Crystallogr. B 1968, 24 (5), 637. doi: 10.1107/S0567740868002979  doi: 10.1107/S0567740868002979

    22. [22]

      Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey, C. P. Nature 2018, 559 (7715), 556. doi: 10.1038/s41586-018-0347-0  doi: 10.1038/s41586-018-0347-0

    23. [23]

      Yan, L.; Lan, H.; Yu, H.; Qian, S.; Cheng, X.; Long, N.; Zhang, R.; Shui, M.; Shu, J. J. Mater. Chem. A 2017, 5 (19), 8972. doi: 10.1039/C7TA01784G  doi: 10.1039/C7TA01784G

    24. [24]

      Cheng, Q. L.; Zhang, W. H.; Tao, B. Acta Phys. -Chim. Sin. 2015, 31 (7), 1345.  doi: 10.3866/PKU.WHXB201504271

    25. [25]

      Wei, R. F.; Li, D. F; Yin, H.; Wang, X. L.; Li, C. Acta Phys. -Chim. Sin. 2023, 39 (2), 2207035.  doi: 10.3866/PKU.WHXB202207035

    26. [26]

      Aurbach, D.; Levi, M. D.; Gamulski, K.; Markovsky, B.; Salitra, G.; Levi, E.; Heider, U.; Heider, L.; Oesten, R. J. Power Sources 1999, 81, 472. doi: 10.1016/S0378-7753(99)00204-9  doi: 10.1016/S0378-7753(99)00204-9

    27. [27]

      Aurbach, D.; Levi, M. D.; Levi, E.; Teller, H.; Markovsky, B.; Salitra, G.; Heider, U.; Heider, L. J. Electrochem. Soc. 1998, 145 (9), 3024. doi: 10.1149/1.1838758  doi: 10.1149/1.1838758

    28. [28]

      Bao, W.; Zhuang, Q.; Xu, S.; Cui, Y.; Shi, Y.; Qiang, Y. Ionics 2013, 19 1005. doi: 10.1007/s11581-012-0823-8  doi: 10.1007/s11581-012-0823-8

    29. [29]

      Zhuang, Q.-C.; Wei, T.; Du, L.-L.; Cui, Y.-L.; Fang, L.; Sun, S.-G. J. Phys. Chem. C 2010, 114 (18), 8614. doi: 10.1021/jp9109157  doi: 10.1021/jp9109157

    30. [30]

      Zhuang, Q.; Xu, J.; Fan, X.; Dong, Q.; Jiang, Y.; Huang, L.; Sun, S. Chinese Sci. Bull. 2007, 52 (9), 1187. doi: 10.1007/s11434-007-0169-1  doi: 10.1007/s11434-007-0169-1

    31. [31]

      Holzapfel, M.; Martinent, A.; Alloin, F.; Le Gorrec, B.; Yazami, R.; Montella, C. J. Electroanal. Chem. 2003, 546, 41. doi: 10.1016/S0022-0728(03)00144-X  doi: 10.1016/S0022-0728(03)00144-X

    32. [32]

      Shi, W. Y.; Jia, C.; Zhang, Y. L.; Lü, Z. W.; Han, M. F. Acta Phys. -Chim. Sin. 2019, 35 (5), 509.  doi: 10.3866/PKU.WHXB201806071

    33. [33]

      Cui, T. H.; Li, H. Y.; Lü, Z. W.; Wang, Y. G.; Han, M. F.; Sun, Z. H.; Sun, K. H. Acta Phys. -Chim. Sin. 2022, 38 (8), 2011009.  doi: 10.3866/PKU.WHXB202011009

    34. [34]

      Yang, Y.; Zhu, H.; Xiao, J.; Geng, H.; Zhang, Y.; Zhao, J.; Li, G.; Wang, X.-L.; Li, C. C.; Liu, Q. Adv. Mater. 2020, 32 (12), 1905295. doi: 10.1002/adma.201905295  doi: 10.1002/adma.201905295

    35. [35]

      Koçer, C. P.; Griffith, K. J.; Grey, C. P.; Morris, A. J. J. Am. Chem. Soc. 2019, 141 (38), 15121. doi: 10.1021/jacs.9b06316  doi: 10.1021/jacs.9b06316

    36. [36]

      Han, J.-T.; Goodenough, J. B. Chem. Mater. 2011, 23 (15), 3404. doi: 10.1021/cm201515g  doi: 10.1021/cm201515g

    37. [37]

      Lu, X. X.; Dong, S. Y.; Chen, Z. J.; Wu, L. Y.; Zhang, X. G. Acta Phys. -Chim. Sin. 2020, 36 (5), 1906024.  doi: 10.3866/PKU.WHXB201906024

    38. [38]

      Takashima, T.; Tojo, T.; Inada, R.; Sakurai, Y. J. Power Sources 2015, 276, 113. doi: 10.1016/j.jpowsour.2014.11.109  doi: 10.1016/j.jpowsour.2014.11.109

    39. [39]

      Lin, C.; Wang, G.; Lin, S.; Li, J.; Lu, L. Chem. Commun. 2015, 51 (43), 8970. doi: 10.1039/C5CC01494H  doi: 10.1039/C5CC01494H

    40. [40]

      Yu, H.; Cheng, X.; Zhu, H.; Zheng, R.; Liu, T.; Zhang, J.; Shui, M.; Xie, Y.; Shu, J. Nano Energy 2018, 54, 227. doi: 10.1016/j.nanoen.2018.10.025  doi: 10.1016/j.nanoen.2018.10.025

    41. [41]

      Yu, H.; Zhang, J.; Zheng, R.; Liu, T.; Peng, N.; Yuan, Y.; Liu, Y.; Shu, J.; Wang, Z.-B. Mater. Chem. Front. 2020, 4 (2), 631. doi: 10.1039/C9QM00694J  doi: 10.1039/C9QM00694J

  • 加载中
    1. [1]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    6. [6]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(0)
  • Abstract views(265)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return