Citation: Qian CHEN, Bing WEI, Jun-qian CHEN, Hang JIANG, Yi-qiang YE, Xing-jun WANG, Qing-hua GUO, Guang-suo YU, Fu-chen WANG. In-situ study of fractal properties of coal char particles during catalytic gasification[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(5): 523-529. doi: 10.1016/S1872-5813(21)60185-8 shu

In-situ study of fractal properties of coal char particles during catalytic gasification

  • Corresponding author: Xing-jun WANG, wxj@ecust.edu.cn
  • Received Date: 8 November 2021
    Revised Date: 6 December 2021
    Accepted Date: 6 December 2021
    Available Online: 9 June 2022

Figures(7)

  • Interactions of potassium-based catalysts with Shenfu (SF) char during catalytic gasification was observed by an in-situ heating stage microscope. The effects of the gasification temperature (800−900 °C) and the catalyst loading (4.4%, 10%) on the reactivity of coal char were investigated. The heating stage microscopy was used to visualize the catalytic gasification process of coal char particles and the fractal theory was introduced to analyze the surface structure of coal char particles to reveal the gasification reactivity. The experimental results show that the fractal dimension of coal char particles is positively correlated with the carbon conversion rate, and the fractal dimension increases by increasing the gasification temperature and the catalyst loading. The relationship between the initial gasification reaction rate and the fractal dimension of coal char particles is consistent with that between the carbon conversion rate and the fractal dimension of coal char particles. There is an exponential relation between the fractal dimension of coal char and the char angle; the fractal dimension increases with the increase of coal char particle angle; and the fractal dimension of coal char particles can be used in the study of coal char catalytic gasification process.
  • 加载中
    1. [1]

      LEE R P, SEIDL L G, HUANG Q L, MEYER B. An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities[J]. J Fuel Chem Technol,2021,49(8):1057−1076.  doi: 10.1016/S1872-5813(21)60093-2

    2. [2]

      SHARMA A, TAKANOHASHI T, SAITO I. Effect of catalyst addition on gasification reactivity of hyper coal and coal with steam at 775–700°C[J]. Fuel, 2008, 87(12): 2686–2690.

    3. [3]

      YEBOAH Y D, XU Y, SHETH A,GODAVARTY A, AGRAWAL P K. Catalytic gasification of coal using eutectic salts: Identification of eutectics[J]. Carbon,2003,41(2):203−214.  doi: 10.1016/S0008-6223(02)00310-X

    4. [4]

      BAI Y H, LV P, LI F, SONG X D, SU W G, YU G S. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam[J]. Energy Convers Manage,2019,184(4):172−179.

    5. [5]

      WANG Y N, NIU P J, ZHAO H B. Chemical looping gasification of coal using calcium ferrites as oxygen carrier[J]. Fuel Process Technol,2019,192:75−86.  doi: 10.1016/j.fuproc.2019.04.009

    6. [6]

      KOPYSCINSKI J, LAM J, MIMS C A, HILL J M. K2CO3 catalyzed steam gasification of ash-free coal. Studying the effect of temperature on carbon conversion and gas production rate using a drop-down reactor[J]. Fuel,2014,128(15):210−219.

    7. [7]

      WEI Jun-tao, DING Lu, ZHOU Zhi-jie, YU Guang-suo. In-situ analysis of catalytic gasification reaction characteristics of coal char-CO2 with K2CO3 additive[J]. J Fuel Chem Technol,2015,43(11):1311−1319.  doi: 10.3969/j.issn.0253-2409.2015.11.005

    8. [8]

      DING L, ZHOU Z J, HUO W, WANG Y F, YU G S. In situ heating stage analysis of fusion and catalytic effects of a Na2CO3 additive on coal char particle gasification[J]. Ind Eng Chem Res,2015,53(49):19159−19167.

    9. [9]

      MEI Yan-gang, WANG Zhi-qing, ZHANG He, ZHANG Sheng-jian, FANG Yi-tian. In situ investigation of alkali metal migration on the reactivity of coal coke gasification[J]. J Fuel Chem Technol,2021,49(6):735−741.

    10. [10]

      MANDELBROT B B. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars[J]. J Fluid Mech,2006,72(3):401−416.

    11. [11]

      MANDELBROT B B. Fractal analysis and synthesis of fracture surface roughness and related forms of complexity and disorder[J]. Int J Fract,2006,138(1/4):13−17.  doi: 10.1007/s10704-006-0037-z

    12. [12]

      JIANG Q, LOGAN B E. Fractal dimensions of aggregates determined from steady-state size distributions[J]. Environ Sci Technol,1991,25(12):2031−2038.  doi: 10.1021/es00024a007

    13. [13]

      WANG Xing-jun, SU Yu-feng, YI Min, LIU Hai-feng, GONG Yan, WANG Fu-chen. Flocculation process and fractal character of floc in water systems of entrained bed coal gasification[J]. J Coal Sci Eng,2016,41(5):1266−1272.

    14. [14]

      LI Z, NI G H, SUN L L, SUN Q, LI S, DONG K, XIE J N, WANG G. Effect of ionic liquid treatment on pore structure and fractal characteristics of low rank coal[J]. Fuel,2020,262:116513.  doi: 10.1016/j.fuel.2019.116513

    15. [15]

      ZHOU Jing, ZHOU Zhi-jie, GONG Xin, YU Zun-hong. Study of char- CO2 gasification (I) by isothermal thermogravimetry[J]. Coal Convers,2002,25(4):66−69.  doi: 10.3969/j.issn.1004-4248.2002.04.016

    16. [16]

      ZHOU Jing, GONG Xing, YU Zun-hong. A study of char-CO2 gasification part (II) by temperature-programmed thermogravimetry[J]. Coal Convers,2003,26(1):78−81.  doi: 10.3969/j.issn.1004-4248.2003.01.018

    17. [17]

      FAN C, JIN H, SHANG F, FENG H F, SUN J L. Study on the surface structure development of porous char particles in catalytic supercritical water gasification process[J]. Fuel Process Technol,2019,193:73−81.  doi: 10.1016/j.fuproc.2019.04.029

    18. [18]

      JIANG Xian-gang, LIU Jie, FENG Li, TANG Jie-wu. Effects of pyrolysis temperature and de-ashing treatment on pore structure of lignite semi-coke and its fractal analysis[J]. Coal Convers,2018,41(3):19−26.  doi: 10.3969/j.issn.1004-4248.2018.03.003

    19. [19]

      SHEN Z J, LIANG Q F, XU J L, ZHANG B B, LIU H F. In-situ experimental study of CO2 gasification of char particles on molten slag surface[J]. Fuel,2015,160:560−567.  doi: 10.1016/j.fuel.2015.08.010

    20. [20]

      LIU Ming, SHEN Zhong-jie, HAN Dong, LIANG Qin-feng, XU Jian-liang, LIU Hai-feng. In-situ gasification characteristics of a petroleum coke with CO2 at high temperature[J]. J Chem Eng,2017,68(4):1622−1628.

    21. [21]

      HUO Wei. Research on pyrolysis characteristics and gasification kinetics modeling of coal and other carbonaceous materials[D]. Shanghai: East China University of Science and Technology, 2015.

    22. [22]

      ARASAN S, AKBULUT S, HASILOGLU A S. The relationship between the fractal dimension and shape properties of particles[J]. KSCE J Civ Eng,2011,15(7):1219−1225.  doi: 10.1007/s12205-011-1310-x

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    10. [10]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

Metrics
  • PDF Downloads(17)
  • Abstract views(2118)
  • HTML views(393)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return