Citation: Rao XIAO, Jun-feng ZHANG, Ling-kui ZHAO. An ammonia-free denitration method: Direct reduction of NOx over activated carbon promoted by Cu-K bimetals[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(5): 628-640. doi: 10.1016/S1872-5813(21)60183-4 shu

An ammonia-free denitration method: Direct reduction of NOx over activated carbon promoted by Cu-K bimetals

  • Corresponding author: Jun-feng ZHANG, xtuzhjf@163.com
  • Received Date: 10 September 2021
    Revised Date: 22 November 2021
    Available Online: 9 June 2022

Figures(17)

  • As ammonia slip becomes more serious with the traditional deNOx application, ammonia-free technologies have received more and more attention recently. Cu-K bimetal loaded activated carbon catalysts were prepared by equivalent-volume impregnation method for the direct reduction of NO and showed good NO reduction performance in a wide temperature range under temperature-programmed surface reactions (TPSRs) conditions in aerobic and anaerobic environments. The catalysts were characterized by BET, SEM, XRD, XPS, H2-TPR, Raman and FT-IR techniques and the NO reduction mechanism was analyzed. Experimental results show that the active functional groups formed on the surface of activated carbon are the important intermediate products and play a key role in the reduction reaction. The presence of O2 greatly promotes the formation of the intermediate, C(O) (Oxygen-containing functional groups on the carbon surface), leading to the increase reduction rate of NO. The bimetallic oxides catalysts are obviously effective to directly reduce NO. When the ratio of copper: potassium is 2∶1, the NO reduction efficiency is about 90% at 300 °C. The catalytic activity mainly depends on the redox cycle of CuO/Cu2O, and the potassium inhibits the agglomeration of copper on the surface of carbon materials and enhances the catalytic reactivity of Cu.
  • 加载中
    1. [1]

      QIANG L, XIAO Y L, HONG W, QIAN Q H. Current situation and trend analysis of clean heating in north China[J]. Energy China,2021,1:17−22.

    2. [2]

      CHANG Z. Research on development and engineering application of key technology of denitration of central heating boiler flue gas[D]. Nanjing: Southeast University, 2018.

    3. [3]

      ZHANG X, FUNG J, LAU A, HOSSAIN, M. S. HUANG, W. Air quality and synergistic health effects of ozone and nitrogen oxides in response to China's integrated air quality control policies during 2015–2019[J]. Chemosphere,2020,268(2021):129385.

    4. [4]

      HENDRYX M, ZULLIG K J, LUO J H. Impacts of coal use on health[J]. Annu Rev Publ Health,2020,41(1):397−415.  doi: 10.1146/annurev-publhealth-040119-094104

    5. [5]

      TAO Z, ZHEN H Z. Effects of nitrogen oxides and meteorological factors on ozone pollution in the ambient air of Rizhao city[J]. Energy Conserv Environ Prot,2019,2:80−81.

    6. [6]

      YUE J S, NIAN X Z. Ammonia emission without participating in the reduction reaction of denitrification[J]. Sci Manag,2019,39(6):68−75.

    7. [7]

      JIAN T, JIAN H Y, OU C, GUANG X Y. Excessive ammonia escape is another cause of aggravating atmospheric haze[J]. Energy China,2020,42(10):45−47.

    8. [8]

      YAN W, XUE J D. Ammonia pollution: the neglected culprit of smog[J]. Ecolog Econ,2017,33(6):6−9.

    9. [9]

      ZHANG Y, FENG Q, LI S, XU K, PEI Y, ZHU Y. Study on operation status of SCR denitration system in Chinese coal-fired power plants[J]. IOP Confer Ser: EES,2020,467(1):012119.  doi: 10.1088/1755-1315/467/1/012119

    10. [10]

      GAO Y W, PAN W G, GUO R T, ZHEN W L, ZHANG Q, SHI C L, ZHAO X. Review of denitration by SNCR in cement kilns[J]. Adv Mater Res,2013,864–867:1474−1477.

    11. [11]

      CHEN H, LUO M, WANG Y, ZHANG Q, LIU Y. Influence of coal-fired boiler fly ash on SCR denitration catalysts and preventive measures[J]. J Combust Sci Technol,2017,23(3):200−211.

    12. [12]

      YAO Y, GUI S, YANG J, WEI J, ZHANG W, LI P, XUE F, SU J, LIU X. Cause analysis and countermeasure of blockage in urea pyrolysis denitration system of coal-fired power plant[J]. IOP Confer Ser: EES,2021,651(2):022058.  doi: 10.1088/1755-1315/651/2/022058

    13. [13]

      ZHANG J. Research and application of dry flue gas denitration method for small coal-fired boiler[J]. Coal Chem Ind,2019,42(7):139−141.

    14. [14]

      KE Y. Experimental study on the purification of NOx by hot carbon reduction method[J]. Environ Prot Chem Ind,1984,3:4−47.

    15. [15]

      MJ I G, LINARES S A, RADOVIC L R, SALINAS-MARTINEZ de LECEA C. NO reduction by activated carbons. 7. Some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy Fuels,1996,10(1):158−168.  doi: 10.1021/ef950066t

    16. [16]

      YANG J, MESTL G, HEREIN D, SCHLGL R, FIND J. Reaction of NO with carbonaceous materials: 1. Reaction and adsorption of NO on ashless carbon black[J]. Carbon,2000,38(5):715−727.  doi: 10.1016/S0008-6223(99)00150-5

    17. [17]

      SMITH R N, SWINEHART J, LESNINI D. The oxidation of cardon by nitric oxide[J]. J Phys Chem,1959,63(4):544−547.

    18. [18]

      GRZYBEK T, KLINIK J, SAMOJEDEN B, SUPRUN V, PAPP H. Nitrogen-promoted active carbons as DeNOx catalysts[J]. Catal Today,2008,137(2/4):228−234.  doi: 10.1016/j.cattod.2007.11.009

    19. [19]

      WANG Y, QIN N, CUI S, MA X, PENG S. Influence of biochar composition and micro-structure on the denitration of flue gases at high temperature[J]. Appl Sci-basel,2020,10(6):1920.  doi: 10.3390/app10061920

    20. [20]

      WU H X, CAI J, REN Q Q, XU J, CHU F H, LYU Q G. An efficient and economic denitration technology based on fuel pretreatment for cement cleaner production[J]. J Clean Prod,2020,272:122669.  doi: 10.1016/j.jclepro.2020.122669

    21. [21]

      LIN Y T, LI Y R, XU Z C, XIONG J, ZHU T Y. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel,2018,223(1):312−323.

    22. [22]

      LI M X, YI Z J, LI N L, LI G W, ZHI Y L KAI W Z. Preparation and characterization of activated carbon modified by ferric oxide[J]. Carbon,2017,1:16−19.

    23. [23]

      LI M X, KAI W Z. Preparation and characterization of copper oxide modified activated carbon[J]. Carbon,2017,3:24−32.

    24. [24]

      ILLAN G M J, LINARES-SOLANO A, RADOVIC L R, SALINAS-MARTINEZ de LECEA C L. NO reduction by activated carbons. 4. Catalysis by calcium[J]. Energy Fuels,1995,9(1):112−118.  doi: 10.1021/ef00049a017

    25. [25]

      ILLAN G M J, LINARES-SOLANO A, SALINAS-MARTINEZ de LECEA C. NO reduction by activated carbon. 6. Catalysis by transition metals[J]. Energy Fuels,1995,9(6):976−983.  doi: 10.1021/ef00054a007

    26. [26]

      ILLANGOMEZ M J, LINARESSOLANO A, RADOVIC L R. NO reduction by activated carbons. 2. Catalytic effect of potassium[J]. Fuel Energy Abstracts,1995,36(3):97−103.

    27. [27]

      SHU Y, ZHANG F, WANG F, WANG H M. Catalytic reduction of NOx by biomass-derived activated carbon supported metals[J]. Chin J Chem Eng,2018,26(10):2077−2083.  doi: 10.1016/j.cjche.2018.04.019

    28. [28]

      TSCHAMBER V, BRILHAC] J F. Oxidation of carbon by NOx, with particular reference to NO2 and N2O[J]. Fuel,2008,87:131−146.  doi: 10.1016/j.fuel.2007.04.012

    29. [29]

      BUENO-LÓPEZ A, SORIANO-MORA J M, GARCÍA-GARCÍA A. Study of the temperature window for the selective reduction of NOx in O2-rich gas mixtures by metal-loaded carbon[J]. Catal Commun,2006,7(9):678−684.  doi: 10.1016/j.catcom.2006.02.010

    30. [30]

      LEI Z, YAN J, FANG J, SHUI H, KANG S. Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe-CaO and Fe-CeO2[J]. Energy,2021,216:119246.  doi: 10.1016/j.energy.2020.119246

    31. [31]

      TIGHE C J, DENNIS J S, HAYHURST A N, TEIGG M. V. The reactions of NO with diesel soot, fullerene, carbon nanotubes and activated carbons doped with transition metals[J]. Proc Combust Inst,2009,32(2):1989−1996.  doi: 10.1016/j.proci.2008.06.165

    32. [32]

      YAMASHITA H, YAMADA H, TOMITA A. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J]. Appl Catal,1991,78(2):1−6.  doi: 10.1016/0166-9834(91)80101-2

    33. [33]

      BAILÓN-GARCÍA E, ELMOUWAHIDI A, RIBEIRO F, HENRIQUES C, PEREZ-CADENAS A F, MARÍN F C, MALDONADO-HÓDAR H J. Reduction of NO with new vanadium-carbon xerogel composites. Effect of the oxidation state of vanadium species[J]. Carbon,2020,156:194−204.  doi: 10.1016/j.carbon.2019.09.047

    34. [34]

      KIENER J, LIMOUSY L, JEGUIRIM M, LE MEINS J M, HAJJAR-GARREAU S, BIGOIN G, GHIMBEU C M. Activated carbon/transition metal (Ni, In, Cu) hexacyanoferrate nanocomposites for cesium adsorption[J]. Materials (Basel),2019,12(8):1253.  doi: 10.3390/ma12081253

    35. [35]

      YAN Y L, XIAN C L. Direct catalytic reduction of NO by zero-valent Iron nanocrystalline cluster supported on biomass activated carbon[J]. CIESC J,2019,70(3):1111−1119.

    36. [36]

      LI X C, DONG Z, DOU J, YU J, TAHMASEBI A. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment[J]. Fuel Process Technol,2016,148:91−98.  doi: 10.1016/j.fuproc.2016.02.030

    37. [37]

      YANG N, YU J L, DOU J X, TAHMASEBI A, SONG H, MOGHTADERI B, LUCAS J, WALL T. The effects of oxygen and metal oxide catalysts on the reduction reaction of NO with lignite char during combustion flue gas cleaning[J]. Fuel Process Technol,2016,152:102−107.  doi: 10.1016/j.fuproc.2016.06.010

    38. [38]

      ILLÁN-GÓMEZ M J, RAYMUNDO-PIÑERO E, GARĆIA-GARĆIA A, LINARES-SOLANO A, SALINAS-MARTÍNEZ de LECEA C. Catalytic NOx reduction by carbon supporting metals[J]. Appl Catal B: Environ,1999,20:267−275.  doi: 10.1016/S0926-3373(98)00119-2

    39. [39]

      CATALAO R A, MALDONADO-HÓDAR F J, FERNANDES A, HENRIQUES C, RIBEIRO M F. Reduction of NO with metal-doped carbon aerogels[J]. Appl Catal B: Environ,2009,88(1/2):135−141.  doi: 10.1016/j.apcatb.2008.09.019

    40. [40]

      FENG B, LU G, WANG Y Q, GUO Y, GUO Y. Cocatalytic effect of potassium on NO reduction by activated carbon catalyzed by copper oxide[J]. Chin J Catal,2011,32(5):853−861.

    41. [41]

      VENEZUELA P, LAZZERI M, MAURI F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands[J]. Phys Rev,2011,84(3):1−25.

    42. [42]

      ZHANG G Q, ZHONG L, ZHENG H Y, FU T J, JU Y B, WANG Y C. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol[J]. Appl Catal B: Environ,2015,179:95−105.  doi: 10.1016/j.apcatb.2015.05.001

    43. [43]

      TENG H, SUUBERG E M. Chemisorption of nitric oxide on char. 1. Reversible nitric oxide sorption[J]. J Chem Inform,1993,97(2):478−483.

    44. [44]

      TENG H, SUUBERG E M. Chemisorption of nitric oxide on char. 2. Irreversible carbon oxide formation[J]. Ind Eng Chem Res,1993,32(3):416−423.  doi: 10.1021/ie00015a004

    45. [45]

      ULÁN-GÓMEZ M J, LINARES SOLANO A, RADOVIC A L R, SALINAS-MARTÍNEZ de LECEA C. No reduction by activated carbons. some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Coal Sci Technol,1995,24(1):1799−1802.

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    3. [3]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    4. [4]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    5. [5]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    6. [6]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    7. [7]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    8. [8]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    9. [9]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    10. [10]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    11. [11]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    12. [12]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    15. [15]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    16. [16]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    19. [19]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    20. [20]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

Metrics
  • PDF Downloads(8)
  • Abstract views(1908)
  • HTML views(319)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return