Citation: Jun GENG, Quan-li KE, Wen-xi ZHOU, Wu-jian WANG, Shan-hu WANG, Ying ZHOU, Han-feng LU. Research progress in the sulfur resistance of catalytic combustion catalysts[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(5): 564-575. doi: 10.1016/S1872-5813(21)60182-2 shu

Research progress in the sulfur resistance of catalytic combustion catalysts

  • Corresponding author: Han-feng LU, luhf@zjut.edu.cn
  • Received Date: 11 October 2021
    Revised Date: 10 November 2021
    Accepted Date: 10 November 2021
    Available Online: 9 June 2022

Figures(8)

  • In the industrial circumstances, sulfur-containing species are frequently present simultaneously in the exhaust gas, containing methane, ethane and volatile organic compounds (VOCs). These species may occupy the active sites on the catalyst surface during the oxidation reaction, causing temporary physical deactivation of the catalyst. Moreover, permanent deactivation might occur when sulfur-containing species react with the active sites, which thereby causes the poisoning and invalidation of the catalysts. This paper reviewed the anti-toxicity properties of precious metals, composite metal oxides and perovskite-type catalysts adopted in the catalytic combustion of exhaust gas. The detailed poisoning mechanism of the catalysts was discussed, and the way to improve the anti-toxicity of the catalyst was also proposed accordingly. This review may provide some insight into the development of catalysts with high resistance to sulfur poisoning.
  • 加载中
    1. [1]

      LEE J E, YONG S O, TSANG D, SONG J H, PARK Y K. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review[J]. Sci Total Environ,2020,719:137405.  doi: 10.1016/j.scitotenv.2020.137405

    2. [2]

      OH C, KIM J, HWANG Y J, MA M, PARK J H. Electrocatalytic methane oxidation on Co3O4- incorporated ZrO2 nanotube powder[J]. Appl Catal B: Environ,2021,283:119653.  doi: 10.1016/j.apcatb.2020.119653

    3. [3]

      TOMATIS M, XU H H, HE J, ZHANG X D. Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: A review[J]. J Chem,2016,2016:8324826.

    4. [4]

      LI X, ZHANG L, YANG Z, WANG P, YAN Y, RAN J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Sep Purif Technol,2020,235:116213.  doi: 10.1016/j.seppur.2019.116213

    5. [5]

      ANWER H, ALI M, LEE S, JEONG S H, PARK J. Simulating alveoli-inspired air pockets in a ZnO/NiMoO4/C3N4 catalyst filter for toluene entrapment and photodecomposition[J]. J Hazard Mater,2020,409:124497.

    6. [6]

      HAN W, DONG F, HAN W, TANG Z. A strategy to construct uniform MOFs/PAN nanowire derived bead-like Co3O4 for VOC catalytic combustion[J]. Chem Commun,2020,56(91):14307−14310.  doi: 10.1039/D0CC06139E

    7. [7]

      YANG Y, WANG G, FANG D, HAN J, DONG F, YANG M. Study of the use of a Pd-Pt-based catalyst for the catalytic combustion of storage tank VOCs[J]. Int J Hydrog Energy,2020,45(43):22732−22743.  doi: 10.1016/j.ijhydene.2020.06.088

    8. [8]

      MIAO C, LIU J, ZHAO J, QUAN Y. Catalytic combustion of toluene over CeO2-CoOx composite aerogels[J]. New J Chem,2020,44(27):11557−11565.  doi: 10.1039/D0NJ00091D

    9. [9]

      SHI Y, WANG J, ZHOU R. Pt-support interaction and nanoparticle size effect in Pt/CeO2-TiO2 catalysts for low temperature VOCs removal[J]. Chemosphere,2021,265:129127.  doi: 10.1016/j.chemosphere.2020.129127

    10. [10]

      HUANG H, XU Y, FENG Q, LEUNG D. Low temperature catalytic oxidation of volatile organic compounds: a review[J]. Catal Sci Technol,2015,5(5):2649−2669.  doi: 10.1039/C4CY01733A

    11. [11]

      AREVALO R L, ASPERA S M, OTADOY R E, NAKANISHI H, KASAI H. Adsorption of CH4 and SO2 on unsupported Pd1-xMxO(101) surface[J]. Catal Lett,2020,150(7):1870−1877.  doi: 10.1007/s10562-019-03093-y

    12. [12]

      KOURTELESIS M, MORAES T S, MATTOS L V, NIAKOLAS D K, NORONHA F B, VERYKIOS X. The effects of support morphology on the performance of Pt/CeO2 catalysts for the low temperature steam reforming of ethanol[J]. Appl Catal B: Environ,2020,284:119757.

    13. [13]

      CALO S V, MORGAN D J, GOLUNSKI S, TAYLOR S H, TWIGG M V. Structure sensitivity and hydration effects in Pt/TiO2 and Pt/TiO2-SiO2 catalysts for NO and propane oxidation[J]. Top Catal,2021,64:1−10.

    14. [14]

      LAI Y T, CHEN T C, LAN Y K, CHEN B S, YOU J H, YANG C M, LAI N C, WU J H, CHEN C S. Pt/SBA-15 as a highly efficient catalyst for catalytic toluene oxidation[J]. ACS Catal,2014,4(11):3824−3836.  doi: 10.1021/cs500733j

    15. [15]

      XIAO Yi-hong, XIA Xiao-ying, YANG Yan-ling, CAI Guo-hui, ZHENG Yong, WEI Ke-mei. Effect of surface basicity of ceria zirconia solid solution on sintering character of Pd[J]. Chin J Inorg Chem,2013,29(6):1129−1134.

    16. [16]

      HE J, CHEN D, LI N, XU Q, LI H, HE J, LU J. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene[J]. Appl Catal B: Environ,2020,265:118560.

    17. [17]

      DING Y, WANG S, ZHANG L, LV L, XU D, LIU W, WANG S. Investigation of supported palladium catalysts for combustion of methane: The activation effect caused by SO2[J]. Chem Eng J,2019,382:122969.

    18. [18]

      ZHANG Y, GLARBORG P, JOHANSEN K, ANDSSON M P, TORP T K, JENSEN A D, CHRISTENSEN J M. A rhodium-based methane oxidation catalyst with high tolerance to H2O and SO2[J]. ACS Catal,2020,10(3):1821−1827.  doi: 10.1021/acscatal.9b04464

    19. [19]

      YE C X, CHEN S, HAN F, XIE X, LVLEV S, HOUK K N, MEGGERS E. Atroposelective synthesis of axially chiral N‐Arylpyrroles by chiral‐at‐rhodium catalysis[J]. Angew Chem Int Ed,2020,59(32):13552−13556.  doi: 10.1002/anie.202004799

    20. [20]

      ZHANG Jin-yao, WANG Zu-wu, YU Wan-bing, WANG Lan-hui. Effect of preparation of supported ruthenium catalysts on toluene catalytic combustion[J]. Environ Sci Technol,2020,43(2):65−68.

    21. [21]

      LIANG Wen-jun, ZHU Yu-xue, SHI Xiu-juan, SUN Hui-pin, REN Si-da. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts[J]. J Chem Ind Eng (China), 2020, 71(8): 3585–3593.

    22. [22]

      ZUO S, YANG P, WANG X. Efficient and environmentally friendly synthesis of AlFe-PILC-supported MnCe catalysts for benzene combustion[J]. ACS Omega,2017,2(8):5179−5186.  doi: 10.1021/acsomega.7b00592

    23. [23]

      XU Chen-jun, ZHU Qiu-lian, HUANG Jin-xing, HU Xiao-bo, LU Han-feng. Effects of Rb2O doping on the activity of Mn-Ce/ZrO2 catalyst for soot combustion[J]. Ind Catal,2015,23(7):531−535.  doi: 10.3969/j.issn.1008-1143.2015.07.007

    24. [24]

      YU Hai-ning. Research on the synergistic effects between MnOx and CeO2 and NO oxidation activities of MnOx-CeO2 catalysts[D]. Beijing: Tsinghua University, 2014.

    25. [25]

      HUANG Ming-hui, JIN Bi-yao, ZHAO Lian-hua, SUN Shi-gang. Preparation and characterization of Pt-Ni-SnO2/C for ethanol oxidation reaction[J]. Acta Phys-Chim Sin,2017,33(3):563−572.  doi: 10.3866/PKU.WHXB201612072

    26. [26]

      TANG Jia, ZHANG Jing, ZHANG Yong-li. Study on the preparation and catalytic performances of activated carbon-supported transition metal catalysts[J]. J Nat Sci Heilongjiang Univ,2016,33(1):82−88.

    27. [27]

      WEN Jun-feng, LIU Xia. Preparation of Ni-Cu/AC catalyst and its catalytic oxidation methanol carbonylation reaction performance[J]. Sci Technol Eng,2012,12(34):9400−9402.  doi: 10.3969/j.issn.1671-1815.2012.34.059

    28. [28]

      WITOON T, CHAIPRADITGUL N, NUMPILAI T, LAPKEATSEREE V, AYODELE B V, CHENG C K, NGUAN N A, SORNCHAMNI T, LIMTRAKUL J. Highly active Fe-Co-Zn/K-Al2O3 catalysts for CO2 hydrogenation to light olefins[J]. Chem Eng Sci,2021,233:116428.  doi: 10.1016/j.ces.2020.116428

    29. [29]

      RASO R, GARCĺA L, RUIZ J, OLIVA M, ARAUZ J. Aqueous phase hydrogenolysis of glycerol over Ni/Al-Fe catalysts without external hydrogen addition[J]. Appl Catal B: Environ,2021,283:119598.  doi: 10.1016/j.apcatb.2020.119598

    30. [30]

      ZHU W, CHEN X, JIN J, DI X, LIANG C, LIU Z. Insight into catalytic properties of Co3O4-CeO2 binary oxides for propane total oxidation[J]. Chin J Catal,2020,41(4):679−690.  doi: 10.1016/S1872-2067(19)63523-0

    31. [31]

      ARANGO-DIAZ A, CECILIA J A, MARRERO-JEREZ J, NUṄEZ P, JIMÉNEZ- JIMÉNEZ J, RODRÍGUEZ-CASTELLÓN E. Freeze-dried Co3O4-CeO2 catalysts for the preferential oxidation of CO with the presence of CO2 and H2O in the feed[J]. Ceram Int,2016,42(6):7462−7474.  doi: 10.1016/j.ceramint.2016.01.151

    32. [32]

      BHUNIA A, BERGANDER K, DANILIUC C G, STUDER A. Fe‐catalyzed anaerobic Mukaiyama‐type hydration of alkenes using nitroarenes[J]. Angew Chem Int Ed,2021,60(15):8313−8320.  doi: 10.1002/anie.202015740

    33. [33]

      LIU Jian-jun, YANG Zhong-qing, ZHANG Li. Effect of Ni addition on the catalytic performance of Cu /γ-Al2O3 in the combustion of lean methane containing SO2[J]. J Fuel Chem Technol,2014,42(10):1253−1258.  doi: 10.3969/j.issn.0253-2409.2014.10.016

    34. [34]

      SHI Rui, LI Jian. Effect of addition WO3 to cerium-cobalt catalysts on carbon monoxide catalytic oxidation performance[J]. Ind Catal,2018,26(3):39−44.  doi: 10.3969/j.issn.1008-1143.2018.03.008

    35. [35]

      ANGELES M, GUADALUPE V-A, VICTOR S, ELIZABETH N C, RODRIGO R, FRANCISCO T, GETSEMANI M-M. Effect of the method of synthesis in the photoactivity of TiO2-Co and TiO2-CoCe materials[J]. J Nanosci Nanotechnol,2015,15(9):7272−7274.  doi: 10.1166/jnn.2015.10575

    36. [36]

      ZHENG Jian-dong, GE Xiu-tao, ZHANG Shou-quan. Synthesis of LaCo1−xFexO3 perovskite catalysts and investigation on their catalytic activity toward methane combustion[J]. Mater Rep,2012,26(14):107−110.  doi: 10.3969/j.issn.1005-023X.2012.14.027

    37. [37]

      WANG Wei-yue, ZHAO Pei-pei, JIN Ling-yun, CEN Bing-heng, CHEN Jian, LUO Meng-fei. Recent advances in catalysts for volatile organic compounds combustion[J]. Chem Ind Eng Prog,2020,39(S2):185−195.

    38. [38]

      KAN Jia-wei, LI Bing, LI Lin, WANG Xiao-jun, CHEN Ying-wen, ZHU She-min, SHEN Shu-bao. Advances in catalysts for catalytic combustion of chlorinated volatile organic compounds[J]. Chem Ind Eng Prog,2016,35(2):499−505.

    39. [39]

      LI Hong, FENG Feng, DU Jun-chen, GUO Miao-xin, ZHANG Ai-min. Research progress of Pd/Al2O3 catalysts for methane combustion[J]. Pre Metals,2020,41(2):66−74.  doi: 10.3969/j.issn.1004-0676.2020.02.013

    40. [40]

      ZHU Han-fei, MA Lei, LI Xiao-nian. Progress of the preparation of sulfur-tolerant palladium catalyst for catalytic oxidation of methane[J]. Appl Chem Ind,2018,47(10):2231−2234+2241.  doi: 10.3969/j.issn.1671-3206.2018.10.044

    41. [41]

      WILBURN M S, EPLING W S. Sulfur deactivation and regeneration of mono- and bimetallic Pd-Pt methane oxidation catalysts[J]. Appl Catal B: Environ,2017,206:589−598.  doi: 10.1016/j.apcatb.2017.01.050

    42. [42]

      KINNUNEN N M, HIRVI J T, KALLINEN K, MAUNULA T, KEENAN M, SUVANTO M. Case study of a modern lean-burn methane combustion catalyst for automotive applications: What are the deactivation and regeneration mechanisms?[J]. Appl Catal B: Environ,2017,207:114−119.  doi: 10.1016/j.apcatb.2017.02.018

    43. [43]

      KRÖCHER O, WIDMER M, ELSENER M, ROTHE D. Adsorption and desorption of SOx on diesel oxidation catalysts[J]. Ind Eng Chem Res,2017,48(22):9847−9857.

    44. [44]

      MOWERY D L, MCCORMICK R L. Deactivation of alumina supported and unsupported PdO methane oxidation catalyst: the effect of water on sulfate poisoning[J]. Appl Catal B: Environ,2001,34(4):287−297.  doi: 10.1016/S0926-3373(01)00222-3

    45. [45]

      DADI R K, DAYA R, KUMAR A, JOSHI S Y, AN H, CUNNINGHAM M J, CURRIER N W, YEZERETS A. A modeling and experimental study on hydrothermal aging deactivation of NO oxidation activity on Pt-Pd catalyst[J]. Appl Catal B: Environ,2020,283:119655.

    46. [46]

      NIE H, HOWE J Y, LACHKOV P T, CHIN Y H C. Chemical and structural dynamics of nanostructures in bimetallic Pt-Pd catalysts, their inhomogeneity, and their roles in methane oxidation[J]. ACS Catal,2019,9(6):5445−5461.  doi: 10.1021/acscatal.9b00485

    47. [47]

      CORRO G, CANO C, FIERRO J. A study of Pt-Pd/γ-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning[J]. J Mol Catal A: Chem,2010,315(1):35−42.  doi: 10.1016/j.molcata.2009.08.023

    48. [48]

      SADOKHINA N, SMEDLER G, NYLÉN U, OLOFSSON M, OLSSON L. Deceleration of SO2 poisoning on PtPd/Al2O3 catalyst during complete methane oxidation[J]. Appl Catal B: Environ,2018,236:384−395.  doi: 10.1016/j.apcatb.2018.05.018

    49. [49]

      YASHNIK S A, CHESALOV Y A, ISHCHENKO A V, KAICHEV V V, ISMAGILOV Z R. Effect of Pt addition on sulfur dioxide and water vapor tolerance of Pd-Mn-hexaaluminate catalysts for high-temperature oxidation of methane[J]. Appl Catal B: Environ,2017,204:89−106.  doi: 10.1016/j.apcatb.2016.11.018

    50. [50]

      YANG Y, WANG G, GE S, YANG H, LIU M, LIU M. Study on anti-sulfur dioxide poisoning of palladium-based catalyst for toluene catalytic combustion[J]. Int J Hydrog Energy,2020,46(9):6329−6340.

    51. [51]

      YANG Y, WANG G, YANG M, YANG H, LIU M, DANG F. Pt modulates the electronic structure of Pd to improve the performance of Pd-based catalytic combustion catalyst[J]. Int J Hydrog Energy,2021,46(35):18391−18400.  doi: 10.1016/j.ijhydene.2021.03.028

    52. [52]

      HUANG Hai-feng, WANG Lu-yun, QI Zhong-hua, LU Han-feng. Activity and sulfur resistance of Pt-Pd /CeO2 catalysts for the oxidation of diesel exhaust[J]. J Fuel Chem Technol,2013,41(11):1401−1408.

    53. [53]

      OHTSUKA H. The oxidation of methane at low temperatures over zirconia-supported Pd, Ir and Pt catalysts and deactivation by sulfur poisoning[J]. Catal Lett,2011,141(3):413−419.  doi: 10.1007/s10562-010-0506-x

    54. [54]

      OHTSUKA H. Effects of Ru or Rh addition on the activity and sulfur tolerance of Pt/ZrO2 for the oxidation of methane at low temperatures[J]. Catal Lett,2013,143(10):1043−1050.  doi: 10.1007/s10562-013-1056-9

    55. [55]

      HE L, YAN Y, BELLETTRE J, YUE J, LUO L. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs[J]. Renewable Sustainable Energy Rev,2020,119:109589.  doi: 10.1016/j.rser.2019.109589

    56. [56]

      SU H, ZHENG Y, SUN X, SUN L, XU X F, QI C. The catalytic stability of Au/FeLaO3/Al2O3 catalyst for low temperature CO oxidation[J]. Kinet Catal,2020,61(2):304−309.  doi: 10.1134/S002315842002010X

    57. [57]

      XIAO Q, WEI S, WANG W W, JIA C. The effect of hydrogenated TiO2 to the Au/TiO2 catalyst in catalyzing CO oxidation[J]. Langmuir,2021,37(11):3270−3280.  doi: 10.1021/acs.langmuir.0c03167

    58. [58]

      YANG Zheng-zheng, LI Yun-xiang, LIAO Yun-wen, LI You-ping, ZHANG Na. Preparation and properties of the Pt/SiO2-Al2O3 sulfur resistance diesel oxidation catalyst[J]. Environ Chem,2016,35(8):1682−1689.  doi: 10.7524/j.issn.0254-6108.2016.08.2016011103

    59. [59]

      GU L, CHEN X, ZHOU Y, ZHU Q, HUANG H, LU H. Propene and CO oxidation on Pt/Ce-Zr-SO42− diesel oxidation catalysts: Effect of sulfate on activity and stability[J]. Chin J Catal,2017,38(3):607−615.  doi: 10.1016/S1872-2067(17)62781-5

    60. [60]

      VALECHHA D, MEGARAJAN S K, FAKEEHA A H, AL-FATESH A S, LABHASETWAR N K. Effect of SO2 on catalytic CO oxidation over nano-structured, mesoporous Au/Ce1−xZrxO2 catalysts[J]. Catal Lett,2017,147(11):2893−2900.  doi: 10.1007/s10562-017-2182-6

    61. [61]

      DING Y, WANG S, ZHANG L, LV L, XU D, LIU W, WANG S. Investigation of supported palladium catalysts for combustion of methane: The activation effect caused by SO2[J]. Chem Eng J,2019,382(24):122969.

    62. [62]

      LIU Xue-ping, WEI Kun-ling, PAN Qiang, ZHAO Bao-lin, SONG Zhong-xian, HU Guang-yin, LIU Shui-xia. Studies of Pd/Al2O3 for photocatalytic performance of benzene: Effect of preparation methods for Al2O3[J]. Environ Sci Technol,2020,43(6):145−150.

    63. [63]

      WANG Cheng. Effect of preparation method of support CuO/CeO2 catalysts on catalytic performance for CO preferential oxidation[D]. Tianjin: Tianjin University, 2017.

    64. [64]

      SHIN H, BAEK M, RO Y, SONG C, LEE K Y, SONG I K. Improvement of sulfur resistance of Pd/Ce-Zr-Al-O catalysts for CO oxidation[J]. Appl Surf Sci,2018,429(31):102−107.

    65. [65]

      WEI Y, ZHANG P, XIONG J, YU Q, WU Q, ZHAO Z, LIU J. SO2-tolerant catalytic removal of soot particles over 3D ordered macroporous Al2O3-supported binary Pt-Co oxide catalysts[J]. Environ Sci Technol,2020,54(11):6947−6956.  doi: 10.1021/acs.est.0c00752

    66. [66]

      HUANG Hai-feng, CHEN Xiao, GU Lei, XU Qin-qi, ZHAN Lin-jun, LU Han-feng. Preparation and effect of Pt/CeZrO2 diesel oxidation catalysts support[J]. J Chem Ind Eng (China),2017,68(4):1390−1397.

    67. [67]

      AROSIO F, COLUSSI S, TROVARELLI A, GROPPI G. Effect of alternate CH4-reducing/lean combustion treatments on the reactivity of fresh and S-poisoned Pd/CeO2/Al2O3 catalysts[J]. Appl Catal B: Environ, 2008, 80(3/4): 335–342.

    68. [68]

      NIU Q, LI B, XU X, WANG X. Activity and sulfur resistance of CuO/SnO2/PdO catalysts supported on γ-Al2O3 for the catalytic combustion of benzene[J]. RSC Adv,2014,4(93):51280−1285.  doi: 10.1039/C4RA07538B

    69. [69]

      MA L, XIE P, LU D Q, LU C S, ZHANG Q F, LI X N. The effect of barium modification on the sulfur tolerance of methane catalytic combustion over PdO/Al2O3 catalysts[J]. Adv Mater Res,2011,287−290:1685−1690.

    70. [70]

      HUANG Hai-feng, QI Zhong-hua, JIANG Bo, LU Han-feng. The modification of diesel oxidation catalyst Pt/Ce-Zr by doping nickel[J]. J Zhejiang Univ Technol,2014,42(4):422−425.  doi: 10.3969/j.issn.1006-4303.2014.04.015

    71. [71]

      HUANG Hai-feng, GU Lei, QI Zhong-hua, LU Han-feng. Cocatalytic effects of molybdenum doping on Pt/Ce-Zr diesel oxidation catalysts[J]. J Chem Eng Chin Univ,2015,29(4):859−865.  doi: 10.3969/j.issn.1003-9015.2015.04.013

    72. [72]

      ZHANG Z, SUN L, HU X, ZHANG Y, TIAN H, YANG X. Anti-sintering Pd@silicalite-1 for methane combustion: Effects of the moisture and SO2[J]. Appl Surf Sci,2019,494:1044−1054.  doi: 10.1016/j.apsusc.2019.07.252

    73. [73]

      MA X, YUAN Q, JIANG J, ZHU M. Pd4S/SiO2: A sulfur-tolerant palladium catalyst for catalytic complete oxidation of methane[J]. Catalysts,2019,9(5):410.  doi: 10.3390/catal9050410

    74. [74]

      KIKUGAWA M, YAMAZAKI K, KATO A, UYAMA T, TAKAHASHI N, SHIJOH H. Silver sulfate catalyst for soot oxidation with high resistance to sulfur poisoning[J]. Appl Catal A: Gen,2019,576:32−38.  doi: 10.1016/j.apcata.2019.02.033

    75. [75]

      DARIF B, OJALA S, PIRAULT-ROY L, BENSITEL M, BRAHMI R, KEISKI R. Study on the catalytic oxidation of DMDS over Pt-Cu catalysts supported on Al2O3, AlSi20 and SiO2[J]. Appl Catal B: Environ,2016,181:24−33.  doi: 10.1016/j.apcatb.2015.07.050

    76. [76]

      DARIF B, OJALA S, KÄRKKÄINEN M, PRONIER S, MAUNULA T, BRAHMI R, KEISKI R. Study on sulfur deactivation of catalysts for DMDS oxidation[J]. Appl Catal B: Environ,2017,206:653−665.  doi: 10.1016/j.apcatb.2017.01.053

    77. [77]

      GAO J, GAO S, WEI J, ZHAO H, ZHANG J. Catalytic combustion of dimethyl disulfide on bimetallic supported catalysts prepared by the wet-impregnation method[J]. Catalysts,2019,9(12):994.  doi: 10.3390/catal9120994

    78. [78]

      QIAN Hong-ya, XU Yan-hua, LI Xi, LIU Zhi-ying. Preparation and performance of CuCrOx/Al2O3 for catalytic combustion of toluene[J]. Environ Poll Control,2018,40(12):1400−1403.

    79. [79]

      LI J, FU H, FU L, HAO J. Complete combustion of methane over indium tin oxides catalysts[J]. Environ Sci Technol,2006,40(20):6455−6459.  doi: 10.1021/es061629q

    80. [80]

      LIMA T M, MACEDO V D, SILVA D, CASTELBLANCO W N, PEREIRA C A, RONCOLATTO R E, GAWANDE M B, ZBOŘIL R, VARMA R S, URQUIETA-GONZÁLEZ E A. Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation[J]. Appl Catal B: Environ,2020,277:119248.  doi: 10.1016/j.apcatb.2020.119248

    81. [81]

      ZHANG X, PEI Z, WU T, LU H, HUANG H. A mechanistic study of the sulfur tolerance of Cu-V mixed oxides in toluene catalytic combustion[J]. React Kinet Mech Catal,2015,116(2):467−478.  doi: 10.1007/s11144-015-0912-6

    82. [82]

      ZHONG Min-yi, LIN Feng-hua, WANG Rui-ming, Zhang Zhi-feng, LIAO Jin-dong, LI Shu-hua, LIANG Hong. Study on the anti-sulfur-poisoning property of catalyst for soot removal from diesel exhausts[J]. Mater Res Appl,2008,2(4):380−382.  doi: 10.3969/j.issn.1673-9981.2008.04.036

    83. [83]

      ZHONG L, FANG Q, LI X, ZHANG C, CHEN G. SO2 resistance of Mn-Ce catalysts for lean methane combustion: Effect of the preparation method[J]. Catal Lett,2019,149(9):3268−3278.

    84. [84]

      YANG W, LI L, FANG Y, SHAN Y, XU J, SHEN H, YU Y, GUO Y, HE H. Interfacial structure-governed SO2 resistance of Cu/TiO2 catalysts in the catalytic oxidation of CO[J]. Catal Sci Technol,2020,10(6):1661−1674.  doi: 10.1039/C9CY02405K

    85. [85]

      YU D, REN Y, YU X, FAN X, WANG L, WANG R, ZHAO Z, CHENG K, CHEN Y, SOJKA Z, KOTARBA A, WEI Y, LIU J. Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2-xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2-ScienceDirect[J]. Appl Catal B: Environ,2020,285:119779.

    86. [86]

      YU Di, PENG Chao, WANG Lan-yi, YU Xue-hua, ZHAO Zhen. Research progress of the preparation of perovskite oxide catalysts and their catalytic performances for soot combustion[J]. Sci Chin: Chem,2020,50(12):1816−1835.

    87. [87]

      SUN W, WEI H, AN L, JIN C, WU H, XIONG Z, PU C, SUN C. Oxygen vacancy mediated La1−xCexFeO3−δ perovskite oxides as efficient catalysts for CWAO of acrylic acid by A-site Ce doping[J]. Appl Catal B: Environ,2019,245:20−28.  doi: 10.1016/j.apcatb.2018.12.024

    88. [88]

      LIANG H, MOU Y, ZHANG H, LI S, YAO C, YU X. Sulfur resistance and soot combustion for La0.8K0.2Co1−yMnyO3 catalyst[J]. Catal Today,2016,281:477−481.

    89. [89]

      ONRUBIA-CALVO J A, PEREDA-AYO B, DE-LA-TORRE U, GONZÁLEZ-VELASCO J R. Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification[J]. Appl Catal B: Environ,2017,213:198−210.  doi: 10.1016/j.apcatb.2017.04.068

    90. [90]

      ZOU G, CHEN M, SHANGGUAN W. Promotion effects of LaCoO3 formation on the catalytic performance of Co-La oxides for soot combustion in air[J]. Catal Commun,2014,51:68−71.  doi: 10.1016/j.catcom.2014.03.028

    91. [91]

      SUN J, ZHAO Z, LI Y, YU X, ZHAO L, LI J, WEI Y, LIU J. Synthesis and catalytic performance of macroporous La1-xCexCoO3 perovskite oxide catalysts with high oxygen mobility for the catalytic combustion of soot[J]. J Rare Earths,2020,38(6):584−593.  doi: 10.1016/j.jre.2019.05.014

    92. [92]

      DA Y, ZENG L, WANG C, MAO T, CHEN R, GONG C, FAN G. Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1−xPtxO3 perovskite oxides[J]. Catal Today,2019,327:73−80.  doi: 10.1016/j.cattod.2018.06.007

    93. [93]

      CAO Li, CAO Shuang, HUANG Xue-min, YANG Quan. Activity and SO2-poisoning resistance of La0.8M0.2CoO3 (M = Sr, Ce, Ba, Ca) perovskite catalysts for VOCs catalytic combustion[J]. Environ Chem,2011,30(9):1539−1545.

    94. [94]

      SHIN H, BAEK M, KIM D H. Sulfur resistance of Ca-substituted LaCoO3 catalysts in CO oxidation[J]. Mol Catal,2019,468:148−153.  doi: 10.1016/j.mcat.2019.02.020

    95. [95]

      LI Chen, SHU Xin-qian, WANG Su-jian, DENG Zeng-she, CHEN Tong, WANG Peng. Research on four-way diesel exhaust catalyst of La0.9Ce0.1NiO3[J]. Environ Sci Technol,2017,40(3):119−122.

    96. [96]

      Xin Bo, Liang Mei-sheng, Wang Jie, LIAN Huan. La0.7K0.3Co0.5Fe0.5O3 work on the removal of NO in diesel exhaust in SO2 atmosphere[J]. Sci Tech Engrg,2018,18(14):79−84.  doi: 10.3969/j.issn.1671-1815.2018.14.013

    97. [97]

      WEI Wei, WU Ai-chun, QIAO Zhi-wei, LI Shu-hua, LIANG Hong, PENG Feng. Effect of Sr and Fe doped LaCoO3 on catalytic oxidation of soot and sulfur resistance[J]. Chin J Inorg Chem,2020,36(1):87−96.  doi: 10.11862/CJIC.2020.031

    98. [98]

      GAO L, XUE Q, LIU Y, LU Y. Base-free catalytic aerobic oxidation of mercaptans for gasoline sweetening over HTLcs-derived CuZnAl catalyst[J]. AIChE J,2010,55(12):3214−3220.

    99. [99]

      YI H, ZHANG X, TANG X, ZHAO S, MA C, HAN W, SONG L. Promotional effects of transition metal modification over Al2O3 for CH3SH catalytic oxidation[J]. ChemistrySelect,2019,4(34):9901−9907.  doi: 10.1002/slct.201902673

    100. [100]

      HE D, HAO H, CHEN D, LIU J, YU J, LU J, LIU F, WAN G, HE S, LUO Y. Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition[J]. Catal Today,2017,281:559−565.  doi: 10.1016/j.cattod.2016.06.022

    101. [101]

      LIU J, HE D, CHEN D, HAO H, YU J, LU J, LIU F, LIU P, ZHAO Y, LUO Y. Promotional effects of rare-earth (La, Ce and Pr) modification over HZSM-5 for methyl mercaptan catalytic decomposition[J]. J Taiwan Inst Chem Eng, 2017, 80: 262–268.

    102. [102]

      HUANG H, ZHONG S, LU H, SHEN L, CHEN Y. Study on the poisoning tolerance and stability of perovskite catalysts for catalytic combustion of volatile organic compounds[J]. React Kinet Mech Catal,2010,101(2):417−427.  doi: 10.1007/s11144-010-0235-6

  • 加载中
    1. [1]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    2. [2]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    3. [3]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(50)
  • Abstract views(3870)
  • HTML views(884)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return