-
[1]
CHENG X X, SU D X, WANG Z Q, MA C Y, WANG M X. Catalytic reduction of nitrogen oxide by carbon monoxide, methane and hydrogen over transition metals supported on BEA zeolites[J]. Int J Hydrog Energy,2018,43(48):21969−21981. doi: 10.1016/j.ijhydene.2018.09.206
-
[2]
XU Z C, LI Y R, LIN Y T, ZHU T Y. A review of the catalysts used in the reduction of NO by CO for gas purification[J]. Environ Sci Pollut Res,2020,27(4):6723−6748.
-
[3]
谈冠希, 迟姚玲, 李双, 易玉峰, 靳广洲. 锰锆复合氧化物CO催化还原NO性能研究[J]. 燃料化学学报,2019,47(10):1258−1264. doi: 10.3969/j.issn.0253-2409.2019.10.013TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Study on catalytic reduction of NO by manganese zirconium complex oxide CO[J]. J Fuel Chem Technol,2019,47(10):1258−1264. doi: 10.3969/j.issn.0253-2409.2019.10.013
-
[4]
ZHOU Y, CHEN A, NING J, SHEN W J. Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts[J]. Chin J Catal,2020,41(6):928−937. doi: 10.1016/S1872-2067(20)63540-9
-
[5]
ZHOU L, LI X X, YAO Z, CHEN Z W, HONG M, ZHU R S, LIANG Y Y, ZHAO J. Transition-metal doped ceria microspheres with nanoporous structures for CO oxidation[J]. Sci Rep,2016,6(1):23900. doi: 10.1038/srep23900
-
[6]
戴晓霞, 蒋威宇, 王望龙, 翁小乐, 尚媛, 薛烨辉, 吴忠标. 超临界水热合成过渡金属改性铈基催化剂应用于CO-SCR脱硝研究[J]. 催化学报,2018,39(4):728−735. doi: 10.1016/S1872-2067(17)63008-0DAI Xiao-xia, JIANG Wei-yu, WANG Wang-long, WENG Xiao-le, SHANG Yuan, XUE Ye-hui, WU Zhong-biao. Study on the application of transition metal modified cerium based catalyst for CO-SCR denitrification by supercritical hydrothermal synthesis[J]. Chin J Catal,2018,39(4):728−735. doi: 10.1016/S1872-2067(17)63008-0
-
[7]
GAMARRA D, CÁMARA A L, MONTE M, RASMUSSEN S B, CHINCHILLA L E, HUNGRÍA A B, MUNUERA G, GYORFFY N, SCHAY Z, CORBERÁN A C, CONESA J C, ARIAS A M. Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Characterization and performance as a function of the exposed face present in the CeO2 support[J]. Appl Catal B: Environ,2013,130:224−238.
-
[8]
WONG K, ZENG Q, YU A. Interfacial synergistic effect of the Cu monomer or CuO dimer modified CeO2(111) catalyst for CO oxidation[J]. Chem Eng J,2011,174(1):408−412. doi: 10.1016/j.cej.2011.09.020
-
[9]
CHEN A, YU X, ZHOU Y, MIAO S, LI Y, KULD S, SEHESTED J, LIU J Y, AOKI T, HONG S, CAMELLONE M F, FABRIS S, NING J, JIN C C, YANG C W, NEFEDOV A, WÖLL C, WANG Y M, SHEN W J. Structure of the catalytically active copper-ceria interfacial perimeter[J]. Nat Catal,2019,2:334−341. doi: 10.1038/s41929-019-0226-6
-
[10]
CUI L X, TANG Y H, ZHANG H, HECTOR LG Jr, OUYANG C Y, SHI S Q, LI H, CHEN L Q. First-principles investigation of transition metal atom M (M = Cu, Ag, Au) adsorption on CeO2(110)[J]. Phys Chem Chem Phys,2012,14(6):1923−33. doi: 10.1039/c2cp22720g
-
[11]
SONG Y L, YIN L L, ZHANG J, HU P, GONG X Q, LU G Z. A DFT + U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies[J]. Surf Sci,2013,618:140−147. doi: 10.1016/j.susc.2013.09.001
-
[12]
NILIUS N. Oxygen Vacancies in the CeO2(111) Surface and Their Relevance for Adsorption Processes-ScienceDirect[C]// Encyclopedia of Interfacial Chemistry, Oxford: Elsevier, 2018: 182–188.
-
[13]
JIA H L, REN B G, LI M, LIU X J, WU J X, TAN X. Structure and electronic properties of Si-doped CeO2(111) surface by the first principle method[J]. Solid State Commun,2018,277:45−49. doi: 10.1016/j.ssc.2018.04.008
-
[14]
REN D D, GUI K T. Study of the adsorption of NH3 and NOx on the nano-γFe2O3(001) surface with density functional theory[J]. Appl Surf Sci,2019,487:171−179. doi: 10.1016/j.apsusc.2019.04.250
-
[15]
CHANSAI S, BURCH R, HARDACRE C, NORTON D, BAO X Y, LEWIS L. Investigating the promotional effect of methanol on the low temperature SCR reaction on Ag/Al2O3[J]. Appl Catal B: Environ,2014,160−161:356−64. doi: 10.1016/j.apcatb.2014.05.040
-
[16]
DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys,2000,113:7756. doi: 10.1063/1.1316015
-
[17]
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1998,77(18):3865−3868.
-
[18]
ANDERSSON D A, SIMAK S I, JOHANSSON B, ABRIKOSOV I A, SKORODUMOVA N V. Modeling of Ce2, Ce2O3, and CeO2−x in the LDA + U formalism[J]. Phys Rev B,2007,75(3):035109. doi: 10.1103/PhysRevB.75.035109
-
[19]
贾慧灵, 李梅, 李雪燕, 刘学杰. DFT + U法研究外压下CeO2力学性质和电子结构[J]. 稀有金属,2016,40(6):600−605.JIA Hui-ling, LI Mei, LI Xue-yan, LIU Xue-jie. Study on mechanical properties and electronic structure of CeO2 under external pressure by DFT + U method[J]. Chin J Rare Metals,2016,40(6):600−605.
-
[20]
YANG C, ZHAO Z Y, LIU Q J. Theoretical study of CO oxidation on Au1/Co3O4 (110) single atom catalyst using density functional theory calculations[J]. Mater Sci Semicond Process,2020,123:105578.
-
[21]
YANG X F, WANG A, QIAO B, LI J, ZHANG T. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Acc Chem Res,2013,46(8):1740. doi: 10.1021/ar300361m
-
[22]
LUCCI F R, LIU J L, MARCINKOWSKI M D, YANG M, ALLARD L F, STEPHANOPOULOS M F, SYKES E C H. Selective hydrogenation of 1, 3-butadiene on platinum-copper alloys at the single-atom limit[J]. Nat Commun,2015,6:8550. doi: 10.1038/ncomms9550
-
[23]
孟宇, 刘小艳, 白苗苗, 王英, 马亚军, 曹直. Cu单原子修饰对Fe(111)表面CO吸附性能及电子性质调变的第一性原理研究[J]. 燃料化学学报,2020,48(4):440−447. doi: 10.3969/j.issn.0253-2409.2020.04.007MENG Yu, LIU Xiao-yan, BAI Miao-miao, WANG Ying, MA Ya-jun, CAO Zhi. First-principles study on the CO adsorption properties and electronic properties of Fe (111) surface modified by Cu single atom[J]. J Fuel Chem Technol,2020,48(4):440−447. doi: 10.3969/j.issn.0253-2409.2020.04.007
-
[24]
YANG Z X, YU X H, LU Z S, LI S F, HERMANSSON K. Oxygen vacancy pairs on CeO2(110): A DFT + U study[J]. Phys Lett A,2009,373(31):2786−2792. doi: 10.1016/j.physleta.2009.05.055
-
[25]
张洁, 龚学庆, 卢冠忠. CeO2(110)负载Au纳米颗粒催化CO + NOx反应的DFT + U研究[J]. 催化学报,2014,35(8):1305−1317. doi: 10.1016/S1872-2067(14)60168-6ZHANG Jie, GONG Xue-qing, LU Guan-zhong. DFT + U study of the CO + NOx reaction on a CeO2(110)-supported Au nanoparticle[J]. Chin J Catal,2014,35(8):1305−1317. doi: 10.1016/S1872-2067(14)60168-6
-
[26]
袁金焕, 滕波涛, 赵越, 赵云, 罗孟飞. 贵金属原子在CeO2(111)表面吸附的密度泛函理论研究[J]. 燃料化学学报,2012,40(1):124−128. doi: 10.3969/j.issn.0253-2409.2012.01.020YUAN Jin-huan, TENG Bo-tao, ZHAO Yue, ZHAO Yun, LUO Meng-fei. Density functional theory study on adsorption of noble metal atoms on CeO2 (111) surface[J]. J Fuel Chem Technol,2012,40(1):124−128. doi: 10.3969/j.issn.0253-2409.2012.01.020
-
[27]
YANG Y J, LIU J, ZHANG B K, LIU F. Density functional theory study on the heterogeneous reaction between Hg0 and HCl over spinel-type MnFe2O4[J]. Chem Eng J,2017,308:897−903. doi: 10.1016/j.cej.2016.09.128
-
[28]
CHEN L J, TANG Y H, CUI L X, OUYANG C Y, SHI S Q. Charge transfer and formation of Ce3+ upon adsorption of metal atom M (M = Cu, Ag, Au) on CeO2 (100) surface[J]. J Power Sources,2013,234(15):69−81.
-
[29]
KIRFEL A, EICHHORN K. Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O[J]. Acta Cryst,1990,46(4):271−284. doi: 10.1107/S0108767389012596
-
[30]
SONG Z J, WANG B, YU J, MA C, ZHOU C S, CHEN T, YAN Q Q, WANG K, SUN L S. Density functional study on the heterogeneous oxidation of NO over α-Fe2O3 catalyst by H2O2: Effect of oxygen vacancy[J]. Appl Surf Sci,2017,413:292−301. doi: 10.1016/j.apsusc.2017.04.011
-
[31]
HURTADO A O, AEZ R, SIERRAALTA A. DFT + U study of the electronic structure changes of WO3 monoclinic and hexagonal surfaces upon Cu, Ag, and Au adsorption. Applications for CO adsorption[J]. Surf Sci,2021,714:121907.
-
[32]
LU W, CUI S, GUO H. Study the low-temperature SCR property of M-doped (M=Ni, Cr, Co, Se, Sn) MnO2 (100) through density functional theory (DFT): Improvement of sulfur poisoning resistance[J]. Mol Catal,2018,459:31−37. doi: 10.1016/j.mcat.2018.08.020
-
[33]
MUKHERJEE D, REDDY B M. Noble metal-free CeO2-based mixed oxides for CO and soot oxidation[J]. Catal Today,2017,309:227−235.
-
[34]
ESCH F, FABRIS S, ZHOU L, MONTINI T, AFRICH C, FORNASIERO P, COMELLI G, COMELLI G. Electron localization determines defect formation on ceria substrates[J]. Sci,2005,309(5735):752−755. doi: 10.1126/science.1111568
-
[35]
MA J L, YE F, OU D R, LI L L, MORI T. Structures of defect clusters on ceria {111} surface[J]. J Phys Chem C,2012,116(49):25777−25782. doi: 10.1021/jp306699r
-
[36]
韩仲康. 二氧化铈体系表面化学性质及其催化性能的第一性原理研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015.HAN Zhong-kang. First principles study on surface chemical properties and catalytic performance of ceria system[D]. Shanghai: Graduate School of the Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015.
-
[37]
ZHANG R, SZANYI J, GAO F, MCEWEN J S. The interaction of reactants, intermediates and products with Cu ions in Cu-SSZ-13 NH3 SCR catalysts: An energetic and ab initio X-ray absorption modeling study[J]. Catal Sci Technol,2016,6(15):5812−5829. doi: 10.1039/C5CY02252E
-
[38]
XU H X, CHENG D J, CAO D P, ZENG X C. A universal principle for a rational design of single-atom electrocatalysts[J]. Nat Catal,2018,1:339−348. doi: 10.1038/s41929-018-0063-z