非金属有序大孔磷酸硼晶体合成及催化丙烷氧化脱氢反应性能

陆文多 高新芊 王泉高 李文翠 赵侦超 王东琪 陆安慧

引用本文: 陆文多,  高新芊,  王泉高,  李文翠,  赵侦超,  王东琪,  陆安慧. 非金属有序大孔磷酸硼晶体合成及催化丙烷氧化脱氢反应性能[J]. 催化学报, 2020, 41(12): 1837-1845. doi: 10.1016/S1872-2067(20)63654-3 shu
Citation:  Wen-Duo Lu,  Xin-Qian Gao,  Quan-Gao Wang,  Wen-Cui Li,  Zhen-Chao Zhao,  Dong-Qi Wang,  An-Hui Lu. Ordered macroporous boron phosphate crystals as metal-free catalysts for the oxidative dehydrogenation of propane[J]. Chinese Journal of Catalysis, 2020, 41(12): 1837-1845. doi: 10.1016/S1872-2067(20)63654-3 shu

非金属有序大孔磷酸硼晶体合成及催化丙烷氧化脱氢反应性能

  • 基金项目:

    国家自然科学基金重点项目(21733002);长江学者奖励计划(T2015036).

摘要: 有序大孔材料具有大的比表面积和有序开放的立体孔道结构,有利于暴露更多的活性位点,促进传质扩散,从而提高催化活性.目前,已有报道的有序大孔材料包括金属及氧化物、氧化硅、炭、聚合物等.非金属含氧化合物具有耐氧化的结构特点,适合应用于高温氧化反应,但是体相非金属含氧化合物的比表面积低,并且孔道极不发达,因此亟需合成有利于传质的有序大孔非金属含氧化合物晶体材料.
最近研究者发现,硼基催化剂在催化低碳烷烃氧化脱氢制烯烃反应中呈现出高的反应活性、选择性和稳定性,且我们发现B-O(B-OH)位点在硼基催化材料中起着至关重要的作用.三元非金属磷酸硼晶体由BO4和PO4四面体组成,具有优异的热稳定性和抗氧化性能,有可能适合于催化丙烷氧化脱氢制丙烯的反应.但制备磷酸硼晶体过程通常需要经过高温焙烧,从而导致产物结构密实、无孔、外表面积低.此外,丙烷氧化脱氢反应具有强放热特性,易在催化剂表面形成热点,引起烯烃产物的二次反应,降低目标产物选择性,因此解决传质传热问题尤为重要.如果能充分利用磷酸硼的高导热性,同时调控孔结构以改善传质,减少接触时间,则有望设计一种具有良好催化选择性和产率的非金属催化剂,助力丙烷氧化脱氢制丙烯研究领域的发展.
本文设计合成了结构稳定的三维有序大孔磷酸硼晶体材料,在丙烷氧化脱氢反应中表现出优异的催化活性及选择性.在515℃反应丙烷转化率达14.3%,丙烯选择性达82.5%,烯烃选择性达91.5%,同时,深度氧化的产物CO2选择性不超过1%.由于有序大孔的结构改善了传质,并暴露出更多的活性位点,该催化剂可在高空速下展现出较高的烯烃产率(~16golefin gcat-1 h-1),是目前报道的大部分丙烷氧化脱氢催化剂所能得到的烯烃产率的2-100倍.本文采用电镜、X射线衍射、红外、固体核磁及X射线光电子能谱等手段探究了有序大孔磷酸硼催化剂在丙烷氧化脱氢反应中的结构稳定性及活性位点.结果表明,有序大孔磷酸硼骨架在反应过程中稳定性好,反应后作为活性位的磷酸硼催化剂表面的三配位硼物种有所增加.本文为制备结构稳定、抗氧化性强且催化活性优异的新型非金属催化剂提供了新的途径,为促进氧化脱氢制烯烃研究领域的发展提供了材料支撑平台.

English

    1. [1] C. Jo, J. Hwang, W.-G. Lim, J. Lim, K. Hur, J. Lee, Adv. Mater., 2018, 30, 1703829.

    2. [2] T. Sun, N. Shan, L. Xu, J. Wang, J. Chen, A. A. Zakhidov, R. H. Baughman, Chem. Mater., 2018, 30, 1617-1624.

    3. [3] Y. Wei, J. Liu, Z. Zhao, Y. Chen, C. Xu, A. Duan, G. Jiang, H. He, Angew. Chem. Int. Ed., 2011, 50, 2326-2329.

    4. [4] Y. Wei, J. Liu, Z. Zhao, A. Duan, G. Jiang, C. Xu, J. Gao, H. He, X. Wang, Energy Environ. Sci., 2011, 4, 2959-2970.

    5. [5] J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed., 2012, 51, 3892-3896.

    6. [6] R. C. Schroden, C. F. Blanford, B. J. Melde, B. J. S. Johnson, A. Stein, Chem. Mater., 2001, 13, 1074-1081.

    7. [7] P. P. Shetty, R. Zhang, J. P. Angle, P. V. Braun, J. A. Krogstad, Chem. Mater., 2018, 30, 1648-1654.

    8. [8] A. Imhof, D. J. Pine, Nature, 1997, 389, 948-951.

    9. [9] P. Jiang, M. J. McFarland, J. Am. Chem. Soc., 2004, 126, 13778-13786.

    10. [10] S. O. Cho, H. Y. Jun, S. K. Ahn, Adv. Mater., 2005, 17, 120-125.

    11. [11] J. L. Russell, T. E. Mallouk, ACS Appl. Mater. Interfaces, 2017, 9, 42075-42083.

    12. [12] Z. Guo, D. Zhou, X. L. Dong, Z. Qiu, Y. Wang, Y. Xia, Adv. Mater., 2013, 25, 5668-5672.

    13. [13] Y. Uragami, K. Otsuka, J. Chem. Soc. Faraday Trans., 1992, 88, 3605-3610.

    14. [14] C. M. A. Parlett, K. Wilson, A. F. Lee, Chem. Soc. Rev., 2013, 42, 3876-3893.

    15. [15] L. Shi, D. Wang, W. Song, D. Shao, W. P. Zhang, A.-H. Lu, ChemCatChem, 2017, 9, 1788-1793.

    16. [16] J. T. Grant, C. A. Carrero, F. Goeltl, J. Venegas, P. Mueller, S. P. Burt, S. E. Specht, W. P. McDermott, A. Chieregato, I. Hermans, Science, 2016, 354, 1570-1573.

    17. [17] B. Yan, W.-C. Li, A.-H. Lu, J. Catal., 2019, 369, 296-301.

    18. [18] W.-D. Lu, D. Wang, Z. Zhao, W. Song, W.-C. Li, A.-H. Lu, ACS Catal., 2019, 9, 8263-8270.

    19. [19] J. T. Grant, W. P. McDermott, J. M. Venegas, S. P. Burt, J. Micka, S. P. Phivilay, C. A. Carrero, I. Hermans, ChemCatChem, 2017, 9, 3623-3626.

    20. [20] L. Shi, Y. Wang, B. Yan, W. Song, D. Shao, A.-H. Lu, Chem. Commun., 2018, 54, 10936-10946.

    21. [21] L. Shi, B. Yan, D. Shao, F. Jiang, D. Wang, A.-H. Lu, Chin. J. Catal., 2017, 38, 389-395.

    22. [22] L. Shi, D. Wang, A. H. Lu, Chin. J. Catal., 2018, 39, 908-913.

    23. [23] R. Huang, B. Zhang, J. Wang, K. H. Wu, W. Shi, Y. Zhang, Y. Liu, A. Zheng, R. Schlögl, D. S. Su, ChemCatChem, 2017, 9, 3293-3297.

    24. [24] A. M. Love, B. Thomas, S. E. Specht, M. P. Hanrahan, J. M. Venegas, S. P. Burt, J. T. Grant, M. C. Cendejas, W. P. McDermott, A. J. Rossini, I. Hermans, J. Am. Chem. Soc., 2018, 141, 182-190.

    25. [25] Q. Liu, Y. Wu, F. Xing, Q. Liu, X. Guo, C. Huang, J. Catal., 2020, 381, 599-607.

    26. [26] T. Komatsu, Y. Uragami, K. Otsuka, Chem. Lett., 1988, 1903-1906.

    27. [27] K. Otsuka, Y. Uragami, T. Komatsu, M. Hatano, Stud. Surf. Sci. Catal., 1991, 61, 15-23.

    28. [28] S. Zhao, G. Zhang, K. Feng, J. Lu, Y. Wu, Cryst. Res. Technol., 2012, 47, 391-396.

    29. [29] S. Wang, W.-C. Li, G.-P. Hao, Y. Hao, Q. Sun, X.-Q. Zhang, A.-H. Lu, J. Am. Chem. Soc., 2011, 133, 15304-15307.

    30. [30] M. Schmidt, B. Ewald, Y. Prots, R. Cardoso-Gil, M. Armbrüster, I. Loa, L. Zhang, Y.-X. Huang, U. Schwarz, R. Kniep, Z. Anorg. Allg. Chem., 2004, 630, 655-662.

    31. [31] X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater., 2008, 20, 3987-4019.

    32. [32] C. Perego, S. Peratello, Catal. Today, 1999, 52, 133-145.

    33. [33] Z.-P. Hu, J.-T. Ren, D. Yang, Z. Wang, Z.-Y. Yuan, Chin. J. Catal., 2019, 40, 1385-1394.

    34. [34] A. Adamczyk, M. Handke, J. Mol. Struct., 2000, 555, 159-164.

    35. [35] Z. C. Jia, J. Q. Zhu, C. Z. Jiang, W. X. Shen, J. C. Han, R. R. Chen, Appl. Surf. Sci., 2011, 258, 356-360.

    36. [36] A. Tada, M. Takahashi, N. Okazaki, Phosphorus Research Bulletin, 2001, 12, 111-116.

    37. [37] W. E. Moddeman, A. R. Burke, W. C. Bowling, D. S. Foose, Surf. Interface Anal., 1989, 14, 224-232.

  • 加载中
计量
  • PDF下载量:  56
  • 文章访问数:  3317
  • HTML全文浏览量:  400
文章相关
  • 收稿日期:  2020-04-18
  • 修回日期:  2020-04-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章