用于氯乙烯废气高效催化氧化的Ce-Cu-W-O微球的新颖合成

冯晓珊 郑颖滨 林代峰 吴恩惠 罗永晋 游钰锋 薛珲 钱庆荣 陈庆华

引用本文: 冯晓珊,  郑颖滨,  林代峰,  吴恩惠,  罗永晋,  游钰锋,  薛珲,  钱庆荣,  陈庆华. 用于氯乙烯废气高效催化氧化的Ce-Cu-W-O微球的新颖合成[J]. 催化学报, 2020, 41(12): 1864-1872. doi: 10.1016/S1872-2067(20)63653-1 shu
Citation:  Xiaoshan Feng,  Yingbin Zheng,  Daifeng Lin,  Enhui Wu,  Yongjin Luo,  Yufeng You,  Hun Xue,  Qingrong Qian,  Qinghua Chen. Novel synthetic route to Ce-Cu-W-O microspheres for efficient catalytic oxidation of vinyl chloride emissions[J]. Chinese Journal of Catalysis, 2020, 41(12): 1864-1872. doi: 10.1016/S1872-2067(20)63653-1 shu

用于氯乙烯废气高效催化氧化的Ce-Cu-W-O微球的新颖合成

  • 基金项目:

    国家重点研发计划(2019YFC1904500);国家自然科学基金(21875037);福建省新世纪人才计划.

摘要: 含氯挥发性有机物(CVOC)氯乙烯(VC)出现在工业生产聚氯乙烯(PVC)的尾气中,其具有高毒性和环境稳定性,若直接排放到大气中,会引起环境污染和威胁人类健康,因此有效的去除CVOC至关重要.在众多处理技术,催化氧化法具有反应温度低、能耗少、避免二次污染等优点,因而备受关注.用于CVOC催化氧化的催化剂包含贵金属和非贵金属催化剂,后者因为具有较低的成本和较好的抗氯中毒能力而广受研究.CVOC氧化催化剂通常需要具备酸性位和氧化还原位,酸性位用来吸附活化CVOC分子,而氧化还原位对应深度氧化能力.过渡金属氧化物CeO2具有良好的储氧能力和氧化还原性而被作为催化材料应用于CVOC的催化氧化,但深度氧化能力不佳.研究发现,复合Cu氧化物可以提高CeO2的氧化还原性,继而提升催化剂对CVOC的氧化能力,但酸性不足仍然限制了氯乙烯低温完全氧化的能力.为此,可以尝试在Ce-Cu复合氧化物中引入氧化钨来提高催化剂的酸性,但往往削弱了催化剂的氧化还原性,且酸性位大多分布在催化剂体相中,无法充分发挥其对VC分子的吸附活化.基于此,本文利用钨酸铵随水热时间延长而逐渐溶解并扩散W离子的这一特性,通过一步水热法设计合成了表面富集W物种和高分散精细Cu物种的Ce-Cu-W-O微球,其相对于Ce-Cu-O催化剂具有同时更好的酸性和氧化还原性,从而表现出对VC优异的深度氧化能力和热稳定性.
通过扫描电子显微镜,X射线能谱和X射线衍射分析,我们解析了Ce-Cu-W-O微球上不同元素组分在水热过程中的生长阶段和物相状态.NH3程序升温脱附分析验证了W物种的添加将提高Ce-Cu氧化物的酸性.H2程序升温还原分析表明,共沉淀方式引入W会降低Ce-Cu氧化物的氧化还原性,而水热一步法制备Ce-Cu-W-O微球的氧化还原性却得到了改善,归因细小晶粒尺寸CuO物种的生成.此外,拉曼光谱和XPS分析表明,HW-CeCuW催化剂具有更多的氧空位,有利于活性氧物种的迁移.因此,Ce-Cu-W-O微球表现出优异的低温氧化活性(250℃时的反应速率为2.01×10-7mol/(gcat·s))和较高的HCl选择性.同时,Ce-Cu-W-O微球经三次循环测试后性能仅略微下降,且在300℃下进行72h的耐久性实验中保持稳定的VC转化率和矿化率,表明其良好的热稳定性.本合成策略可以为高效的CVOC催化氧化的金属氧化物催化剂的设计和合成提供一些新思路.

English

    1. [1] B. J. Finlayson-Pitts, J. N. Pitts, Finlayson-Pitts, Science, 1997, 276, 1045-1052.

    2. [2] Z. Hu, S. Qiu, Y. You, Y. Guo, Y. Guo, L. Wang, W. Zhan, G. Lu, Appl. Catal. B, 2018, 225, 110-120.

    3. [3] Y. Luo, J. Zuo, X. Feng, Q. Qian, Y. Zheng, D. Lin, B. Huang, Q. Chen, Chem. Eng. J., 2019, 357, 395-403.

    4. [4] L. Liu, J. Li, H. Zhang, L. Li, P. Zhou, X. Meng, M. Guo, J. Jia, T. Sun, J. Hazard. Mater., 2019, 362, 178-186.

    5. [5] S. Pitkäaho, T. Nevanperä, L. Matejova, S. Ojala, R. L. Keiski, Appl. Catal. B, 2013, 138-139, 33-42.

    6. [6] C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Chem. Rev., 2019, 119, 4471-4568.

    7. [7] M. Zang, C. Zhao, Y. Wang, S. Chen, J. Saudi Chem. Soc., 2019, 23, 645-654.

    8. [8] J. Fenger, Atmos. Environ., 2009, 43, 13-22.

    9. [9] E. Genty, J. Brunet, C. Poupin, S. Ojala, S. Siffert, R. Cousin, Appl. Catal. B, 2019, 247, 163-172.

    10. [10] R. M. Lago, M. L. H. Green, S. C. Tsang, M. Odlyha, Appl. Catal. B, 1996, 8, 107-121.

    11. [11] B. de Rivas, R. López-Fonseca, M. A. Gutiérrez-Ortiz, J. I. Gutiérrez-Ortiz, Appl. Catal. B, 2011, 104, 373-381.

    12. [12] A. Michalik-Zym, R. Dula, D. Duraczyńska, J. Kryściak-Czerwenka, T. Machej, R. P. Socha, W. Włodarczyk, A. Gaweł, J. Matusik, K. Bahranowski, E. Wisła-Walsh, L. Lityńska-Dobrzyńska, E. M. Serwicka, Appl. Catal. B, 2015, 174-175, 293-307.

    13. [13] X. Weng, P. Sun, Y. Long, Q. Meng, Z. Wu, Environ. Sci. Technol., 2017, 51, 8057-8066.

    14. [14] P. Yang, S. Yang, Z. Shi, Z. Meng, R. Zhou, Appl. Catal. B, 2015, 162, 227-235.

    15. [15] W. Cen, Y. Liu, Z. Wu, J. Liu, H. Wang, X. Weng, J Phys. Chem. C, 2014, 118, 6758-6766.

    16. [16] B. Solsona, R. Sanchis, A. Dejoz, T. García, L. Ruiz-Rodríguez, J. López Nieto, J. Cecilia, E. Rodríguez-Castellón, Catalysts, 2017, 7, 96.

    17. [17] C. Wang, C. Zhang, W. Hua, Y. Guo, G. Lu, S. Gil. A. Giroir-Fendler, Chem. Eng. J., 2017, 315, 392-402.

    18. [18] L. Wang, C. H. Zhang, Y. Guo, Y. Guo, G. Lu. Chin. J Catal., 2012, 33, 557-562.

    19. [19] P. Yang, Z. Shi, S. Yang, R. Zhou, Chem. Eng. Sci., 2015, 126, 361-369.

    20. [20] Z. Cheng, J. Li, P. Yang, S. Zuo. Chin. J. Catal. 2018, 39, 849-856.

    21. [21] Z. Fei, H. Liu, Y. Dai, W. Ji, X. Chen, J. Tang, M. Cui, X. Qiao, Chem. Eng. J., 2014, 257, 273-280.

    22. [22] C. He, B.-T. Xu, J.-W. Shi, N.-L. Qiao, Z.-P. Hao, J.-L. Zhao, Fuel Process. Technol., 2015, 130, 179-187.

    23. [23] G. Long, M. Chen, Y. Li, J. Ding, R. Sun, Y. Zhou, X. Huang, G. Han, W. Zhao, Chem. Eng. J., 2019, 360, 964-973.

    24. [24] E. Mena, A. Rey, E. M. Rodríguez, F. J. Beltrán, Appl. Catal. B, 2017, 202, 460-472.

    25. [25] Y. Peng, W. Si, X. Li, J. Chen, J. Li, J. Crittenden, J. Hao, Environ. Sci. Technol., 2016, 50, 9576-9582.

    26. [26] Y. Gu, T. Cai, X. Gao, H. Xia, W. Sun, J. Zhao, Q. Dai, X. Wang, Appl. Catal. B, 2019, 248, 264-276.

    27. [27] Y. Gu, S. Shao, W. Sun, H. Xia, X. Gao, Q. Dai, W. Zhan, X. Wang, J. Catal., 2019, 380, 375-386.

    28. [28] S. A. K. Leghari, S. Sajjad, F. Chen, J. Zhang, Chem. Eng. J., 2011, 166, 906-915.

    29. [29] R. López-Fonseca, A. Aranzabal, J. I. Gutiérrez-Ortiz, J. I. Álvarez-Uriarte, J. R. González-Velasco, Appl. Catal. B, 2001, 30, 303-313.

    30. [30] C. Zhang, W. Hua, C. Wang, Y. Guo, Y. Guo, G. Lu, A. Baylet, A. Giroir-Fendler, Appl. Catal. B, 2013, 134-135, 310-315.

    31. [31] C. Wang, C. Tian, Y. Guo, Z. Zhang, W. Hua, W. Zhan, Y. Guo, L. Wang, G. Lu, J. Hazard. Mater., 2018, 342, 290-296.

    32. [32] C. Yuan, S.-Y. Liu, Z.-Q. Wang, G.-Y. Wang, React. Kinet. Mech. Catal., 2018, 125, 757-771.

    33. [33] C. Wang, W. Hua, G. Chai, C. Zhang, Y. Guo, Catalysts, 2019, 9, 408.

    34. [34] S. Cao, X. Fei, Y. Wen, Z. Sun, H. Wang, Z. Wu, Appl. Catal. A, 2018, 550, 20-27.

    35. [35] R. Barthos, F. Lónyi, G. Onyestyák, J. Valyon, J. Phys. Chem. B, 2000, 104, 7311-7319.

    36. [36] B. de Rivas, R. López-Fonseca, J. R. González-Velasco, J. I. Gutiérrez-Ortiz, J. Mol. Catal. A, 2007, 278, 181-188.

    37. [37] A. Corma, H. García, Chem. Rev., 2002, 102, 3837-3892.

    38. [38] M.-F. Luo, Y.-J. Zhong, X.-X. Yuan, X.-M. Zheng, Appl. Catal. A, 1997, 162, 121-131.

    39. [39] J. Lin, L. Li, Y. Huang, W. Zhang, X. Wang, A. Wang, T. Zhang, J Phys. Chem. C, 2011, 115, 16509-16517.

    40. [40] S. Kato, M. Ammann, T. Huthwelker, C. Paun, M. Lampimaki, M.T. Lee, M. Rothensteiner, J.A. van Bokhoven, Phys. Chem. Chem. Phys., 2015, 17, 5078-5083.

    41. [41] Y. Li, C. Zhang, H. He, J. Zhang, M. Chen, Catal. Sci. Technol., 2016, 6, 2289-2295.

    42. [42] Y. Luo, K. Wang, Y. Xu, X. Wang, Q. Qian, Q. Chen, New J. Chem., 2015, 39, 1001-1005.

    43. [43] J. Ma, G. Jin, J. Gao, Y. Li, L. Dong, M. Huang, Q. Huang, B. Li, J. Mater. Chem. A, 2015, 3, 24358-24370.

  • 加载中
计量
  • PDF下载量:  36
  • 文章访问数:  2821
  • HTML全文浏览量:  263
文章相关
  • 收稿日期:  2020-03-03
  • 修回日期:  2020-04-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章