Citation:
Hailong Liu, Zhiwei Huang, Haixiao Kang, Chungu Xia, Jing Chen. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2-and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts[J]. Chinese Journal of Catalysis,
;2016, 37(5): 700-710.
doi:
10.1016/S1872-2067(15)61080-4
-
Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass-derived furfuryl alcohol to 1,2-pentanediol and 1,5-pentanediol. A Cu-Al2O3 catalyst with 10 wt% Cu loading prepared by a co-precipitation method exhibited the best performance in terms of producing pentanediols compared with the other materials. This catalyst generated an 85.8% conversion and a 70.3% combined selectivity for the target pentanediols at 413 K and 8 MPa H2 over an 8-h reaction. The catalyst could also be recycled over repeated reaction trials without any significant decrease in productivity. Characterizations with X-ray diffraction, NH3/CO2-temperature programmed desorption, N2 adsorption, transmission electron microscopy and N2O chemisorption demonstrated that intimate and effective interactions between Cu particles and the acidic Al2O3 support in this material greatly enhanced its activity and selectivity. The promotion of the hydrogenolysis reaction was found to be especially sensitive to the Cu particle size, and the catalyst with Cu particles 1.9 to 2.4 nm in size showed the highest turnover frequency during the synthesis of pentanediols.
-
-
-
[1]
[1] A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, 2411-2502.
-
[2]
[2] P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538-1558.
-
[3]
[3] C. Z. Li, X. C. Zhao, A. Q. Wang, G. W. Huber, T. Zhang, Chem. Rev., 2015, 115, 11559-11624.
-
[4]
[4] R. Karinen, K. Vilonen, M. Niemelä, ChemSusChem, 2011, 4, 1002-1016.
-
[5]
[5] I. Agirrezabal-Telleria, F. Hemmann, C. Jäger, P. L. Arias, E. Kemnitz, J. Catal., 2013, 305, 81-91.
-
[6]
[6] K. Yan, G. S. Wu, T. Lafleur, C. Jarvis, Renew. Sust. Energ. Rev., 2014, 38, 663-676.
-
[7]
[7] M. Besson, P. Gallezot, C. Pinel, Chem. Rev., 2014, 114, 1827-1870.
-
[8]
[8] Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal., 2013, 3, 2655-2668.
-
[9]
[9] M. Chia, Y. J. Pagán-Torres, D. Hibbitts, Q. H. Tan, H. N. Pham, A. K. Datye, M. Neurock, R. J. Davis, J. A. Dumesic, J. Am. Chem. Soc., 2011, 133, 12675-12689.
-
[10]
[10] T. Mizugaki, T. Yamakawa, Y. Nagatsu, Z. Maeno, T. Mitsudome, K. Jitsukawa, K. Kaneda, ACS Sust. Chem. Eng., 2014, 2, 2243-2247.
-
[11]
[11] S. Bhogeswararao, D. Srinivas, J. Catal., 2015, 327, 65-77.
-
[12]
[12] S. S. Li, N. Li, G. Y. Li, L. Li, A. Q. Wang, Y. Cong, X. D. Wang, T. Zhang, Green Chem., 2015, 17, 3644-3652.
-
[13]
[13] M. J. Climent, A. Corma, S. Iborra, Green Chem., 2014, 16, 516-547.
-
[14]
[14] J. Lee, S. P. Burt, C. A. Carrero, A. C. Alba-Rubio, I. Ro, B. J. O'Neill, H. J. Kim, D. H. K. Jackson, T. F. Kuech, I. Hermans, J. A. Dumesic, G. W. Huber, J. Catal., 2015, 330, 19-27.
-
[15]
[15] S. Koso, I. Furikado, A. Shimao, T. Miyazawa, K. Kunimori, K. Tomishige, Chem. Commun., 2009, 2035-2037.
-
[16]
[16] W. J. Xu, H. F. Wang, X. H. Liu, J. W. Ren, Y. Q. Wang, G. Z. Lu, Chem. Commun., 2011, 47, 3924-3926.
-
[17]
[17] B. Zhang, Y. L. Zhu, G. Q. Ding, H. Y. Zheng, Y. W. Li, Green Chem., 2012, 14, 3402-3409.
-
[18]
[18] B. Pholjaroen, N. Li, Y. Huang, L. Li, A. Wang, T. Zhang, Catal. Today, 2015, 245, 93-99.
-
[19]
[19] S. B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Green Chem., 2014, 16, 617-626.
-
[20]
[20] S. B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Catal. Sci. Technol., 2014, 4, 2535-2549.
-
[21]
[21] S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, K. Tomishige, J. Catal., 2009, 267, 89-92.
-
[22]
[22] O. Koch, A. Köckritz, M. Kant, A. Martin, A. Schöning, U. Armbruster, M. Bartoszek, S. Evert, B. Lange, R. Bienert, US Patent 20 140 066 666, 2012.
-
[23]
[23] K. Y. Chen, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, ChemCatChem, 2010, 2, 547-555.
-
[24]
[24] K. Y. Chen, K. Mori, H. Watanabe, Y. Nakagawa, K. Tomishige, J. Catal., 2012, 294, 171-183.
-
[25]
[25] H. Adkins, R. Connor, J. Am. Chem. Soc., 1931, 53, 1091-1095.
-
[26]
[26] Z. W. Huang, J. Chen, Y. Q. Jia, H. L. Liu, C. G. Xia, H. C. Liu, Appl. Catal. B, 2014, 147, 377-386.
-
[27]
[27] H. L. Liu, Z. W. Huang, C. G. Xia, Y. Q. Jia, J. Chen, H. C. Liu, ChemCatChem, 2014, 6, 2918-2928.
-
[28]
[28] Z. W. Huang, F. Cui, H. X. Kang, J. Chen, X. Z. Zhang, C. G. Xia, Chem. Mater., 2008, 20, 5090-5099.
-
[29]
[29] H. L. Liu, Z. W. Huang, Z. B. Han, K. L. Ding, H. C. Liu, C. G. Xia, J. Chen, Green Chem., 2015, 17, 4281-4290.
-
[30]
[30] H. L. Liu, Z. W. Huang, F. Zhao, F. Cui, X. M. Li, C. G. Xia, J. Chen, Catal. Sci. Technol., 2016, 6, 668-671.
-
[31]
[31] J. Tuteja, H. Choudhary, S. Nishimura, K. Ebitani, ChemSusChem, 2014, 7, 96-100.
-
[32]
[32] C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J. W. Geus, J. Catal., 1991, 131, 178-189.
-
[33]
[33] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612-3620.
-
[34]
[34] X. H. He, H. C. Liu, Catal. Today, 2014, 233, 133-139.
-
[35]
[35] R. A. Van Santen, Acc. Chem. Res., 2009, 42, 57-66.
-
[36]
[36] S. Wang, K. H. Yin, Y. C. Zhang, H. C. Liu, ACS Catal., 2013, 3, 2112-2121.
-
[37]
[37] S. Sitthisa, T. Sooknoi, Y. G. Ma, P. B. Balbuena, D. E. Resasco, J. Catal., 2011, 277, 1-13.
-
[38]
[38] R. S. Rao, A. B. Walters, M. A. Vannice, J. Phys. Chem. B, 2005, 109, 2086-2092.
-
[39]
[39] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612-3620.
-
[40]
[40] M. A. Mellmer, J. M. R. Gallo, D. M. Alonso, J. A. Dumesic, ACS Catal., 2015, 5, 3354-3359.
-
[41]
[41] J. Yang, H. Y. Zheng, Y. L. Zhu, G. W. Zhao, C. H. Zhang, B. T. Teng, H. W. Xiang, Y. W. Li, Catal. Commun., 2004, 5, 505-510.
-
[42]
[42] J. Lessard, J. F. Morin, J. F. Wehrung, D. Magnin, E. Chornet, Top. Catal., 2010, 53, 1231-1234.
-
[43]
[43] S. Sitthisa, W. An, D.E. Resasco, J. Catal., 2011, 284, 90-101.
-
[44]
[44] S. G. Wang, V. Vorotnikov, D. G. Vlachos, Green Chem., 2014, 16, 736-747.
-
[45]
[45] M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D. G. Vlachos, B. J. Xu, ACS Catal., 2015, 5, 3988-3994.
-
[1]
-
-
-
[1]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[2]
Xiqing Liang , Tian Zhao , Jiawei Li , Haohui Tan , Hai Chen , Liyan Zeng . Pentaerythritol’s Journey of Making Friends. University Chemistry, 2025, 40(10): 175-185. doi: 10.12461/PKU.DXHX202412009
-
[3]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[4]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[5]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[6]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[7]
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
-
[8]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[10]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026
-
[11]
Shiyi Chen , Jialong Fu , Jianping Qiu , Guoju Chang , Shiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-. doi: 10.1016/j.actphy.2025.100135
-
[12]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[13]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[14]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024
-
[15]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[16]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[17]
Yiling Wu , Peiyao Jin , Shenyue Tian , Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034
-
[18]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[19]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[20]
Xiaoyang Li , Xiaowei Huang , Yimeng Zhang , Huan Liu , Shao Jin , Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(607)
- HTML views(36)
Login In
DownLoad: