Citation: Hailong Liu, Zhiwei Huang, Haixiao Kang, Chungu Xia, Jing Chen. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2-and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts[J]. Chinese Journal of Catalysis, ;2016, 37(5): 700-710. doi: 10.1016/S1872-2067(15)61080-4 shu

Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2-and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts

  • Corresponding author: Zhiwei Huang, 
  • Received Date: 30 January 2016
    Available Online: 7 March 2016

    Fund Project: 国家自然科学基金(21133011,21203221,21473224) (21133011,21203221,21473224)甘肃省自然科学基金(1308RJZA281). (1308RJZA281)

  • Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass-derived furfuryl alcohol to 1,2-pentanediol and 1,5-pentanediol. A Cu-Al2O3 catalyst with 10 wt% Cu loading prepared by a co-precipitation method exhibited the best performance in terms of producing pentanediols compared with the other materials. This catalyst generated an 85.8% conversion and a 70.3% combined selectivity for the target pentanediols at 413 K and 8 MPa H2 over an 8-h reaction. The catalyst could also be recycled over repeated reaction trials without any significant decrease in productivity. Characterizations with X-ray diffraction, NH3/CO2-temperature programmed desorption, N2 adsorption, transmission electron microscopy and N2O chemisorption demonstrated that intimate and effective interactions between Cu particles and the acidic Al2O3 support in this material greatly enhanced its activity and selectivity. The promotion of the hydrogenolysis reaction was found to be especially sensitive to the Cu particle size, and the catalyst with Cu particles 1.9 to 2.4 nm in size showed the highest turnover frequency during the synthesis of pentanediols.
  • 加载中
    1. [1]

      [1] A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, 2411-2502.

    2. [2]

      [2] P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538-1558.

    3. [3]

      [3] C. Z. Li, X. C. Zhao, A. Q. Wang, G. W. Huber, T. Zhang, Chem. Rev., 2015, 115, 11559-11624.

    4. [4]

      [4] R. Karinen, K. Vilonen, M. Niemelä, ChemSusChem, 2011, 4, 1002-1016.

    5. [5]

      [5] I. Agirrezabal-Telleria, F. Hemmann, C. Jäger, P. L. Arias, E. Kemnitz, J. Catal., 2013, 305, 81-91.

    6. [6]

      [6] K. Yan, G. S. Wu, T. Lafleur, C. Jarvis, Renew. Sust. Energ. Rev., 2014, 38, 663-676.

    7. [7]

      [7] M. Besson, P. Gallezot, C. Pinel, Chem. Rev., 2014, 114, 1827-1870.

    8. [8]

      [8] Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal., 2013, 3, 2655-2668.

    9. [9]

      [9] M. Chia, Y. J. Pagán-Torres, D. Hibbitts, Q. H. Tan, H. N. Pham, A. K. Datye, M. Neurock, R. J. Davis, J. A. Dumesic, J. Am. Chem. Soc., 2011, 133, 12675-12689.

    10. [10]

      [10] T. Mizugaki, T. Yamakawa, Y. Nagatsu, Z. Maeno, T. Mitsudome, K. Jitsukawa, K. Kaneda, ACS Sust. Chem. Eng., 2014, 2, 2243-2247.

    11. [11]

      [11] S. Bhogeswararao, D. Srinivas, J. Catal., 2015, 327, 65-77.

    12. [12]

      [12] S. S. Li, N. Li, G. Y. Li, L. Li, A. Q. Wang, Y. Cong, X. D. Wang, T. Zhang, Green Chem., 2015, 17, 3644-3652.

    13. [13]

      [13] M. J. Climent, A. Corma, S. Iborra, Green Chem., 2014, 16, 516-547.

    14. [14]

      [14] J. Lee, S. P. Burt, C. A. Carrero, A. C. Alba-Rubio, I. Ro, B. J. O'Neill, H. J. Kim, D. H. K. Jackson, T. F. Kuech, I. Hermans, J. A. Dumesic, G. W. Huber, J. Catal., 2015, 330, 19-27.

    15. [15]

      [15] S. Koso, I. Furikado, A. Shimao, T. Miyazawa, K. Kunimori, K. Tomishige, Chem. Commun., 2009, 2035-2037.

    16. [16]

      [16] W. J. Xu, H. F. Wang, X. H. Liu, J. W. Ren, Y. Q. Wang, G. Z. Lu, Chem. Commun., 2011, 47, 3924-3926.

    17. [17]

      [17] B. Zhang, Y. L. Zhu, G. Q. Ding, H. Y. Zheng, Y. W. Li, Green Chem., 2012, 14, 3402-3409.

    18. [18]

      [18] B. Pholjaroen, N. Li, Y. Huang, L. Li, A. Wang, T. Zhang, Catal. Today, 2015, 245, 93-99.

    19. [19]

      [19] S. B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Green Chem., 2014, 16, 617-626.

    20. [20]

      [20] S. B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Catal. Sci. Technol., 2014, 4, 2535-2549.

    21. [21]

      [21] S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, K. Tomishige, J. Catal., 2009, 267, 89-92.

    22. [22]

      [22] O. Koch, A. Köckritz, M. Kant, A. Martin, A. Schöning, U. Armbruster, M. Bartoszek, S. Evert, B. Lange, R. Bienert, US Patent 20 140 066 666, 2012.

    23. [23]

      [23] K. Y. Chen, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, ChemCatChem, 2010, 2, 547-555.

    24. [24]

      [24] K. Y. Chen, K. Mori, H. Watanabe, Y. Nakagawa, K. Tomishige, J. Catal., 2012, 294, 171-183.

    25. [25]

      [25] H. Adkins, R. Connor, J. Am. Chem. Soc., 1931, 53, 1091-1095.

    26. [26]

      [26] Z. W. Huang, J. Chen, Y. Q. Jia, H. L. Liu, C. G. Xia, H. C. Liu, Appl. Catal. B, 2014, 147, 377-386.

    27. [27]

      [27] H. L. Liu, Z. W. Huang, C. G. Xia, Y. Q. Jia, J. Chen, H. C. Liu, ChemCatChem, 2014, 6, 2918-2928.

    28. [28]

      [28] Z. W. Huang, F. Cui, H. X. Kang, J. Chen, X. Z. Zhang, C. G. Xia, Chem. Mater., 2008, 20, 5090-5099.

    29. [29]

      [29] H. L. Liu, Z. W. Huang, Z. B. Han, K. L. Ding, H. C. Liu, C. G. Xia, J. Chen, Green Chem., 2015, 17, 4281-4290.

    30. [30]

      [30] H. L. Liu, Z. W. Huang, F. Zhao, F. Cui, X. M. Li, C. G. Xia, J. Chen, Catal. Sci. Technol., 2016, 6, 668-671.

    31. [31]

      [31] J. Tuteja, H. Choudhary, S. Nishimura, K. Ebitani, ChemSusChem, 2014, 7, 96-100.

    32. [32]

      [32] C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J. W. Geus, J. Catal., 1991, 131, 178-189.

    33. [33]

      [33] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612-3620.

    34. [34]

      [34] X. H. He, H. C. Liu, Catal. Today, 2014, 233, 133-139.

    35. [35]

      [35] R. A. Van Santen, Acc. Chem. Res., 2009, 42, 57-66.

    36. [36]

      [36] S. Wang, K. H. Yin, Y. C. Zhang, H. C. Liu, ACS Catal., 2013, 3, 2112-2121.

    37. [37]

      [37] S. Sitthisa, T. Sooknoi, Y. G. Ma, P. B. Balbuena, D. E. Resasco, J. Catal., 2011, 277, 1-13.

    38. [38]

      [38] R. S. Rao, A. B. Walters, M. A. Vannice, J. Phys. Chem. B, 2005, 109, 2086-2092.

    39. [39]

      [39] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612-3620.

    40. [40]

      [40] M. A. Mellmer, J. M. R. Gallo, D. M. Alonso, J. A. Dumesic, ACS Catal., 2015, 5, 3354-3359.

    41. [41]

      [41] J. Yang, H. Y. Zheng, Y. L. Zhu, G. W. Zhao, C. H. Zhang, B. T. Teng, H. W. Xiang, Y. W. Li, Catal. Commun., 2004, 5, 505-510.

    42. [42]

      [42] J. Lessard, J. F. Morin, J. F. Wehrung, D. Magnin, E. Chornet, Top. Catal., 2010, 53, 1231-1234.

    43. [43]

      [43] S. Sitthisa, W. An, D.E. Resasco, J. Catal., 2011, 284, 90-101.

    44. [44]

      [44] S. G. Wang, V. Vorotnikov, D. G. Vlachos, Green Chem., 2014, 16, 736-747.

    45. [45]

      [45] M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D. G. Vlachos, B. J. Xu, ACS Catal., 2015, 5, 3988-3994.

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    7. [7]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    8. [8]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

Metrics
  • PDF Downloads(0)
  • Abstract views(409)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return