Citation:
Hailong Liu, Zhiwei Huang, Haixiao Kang, Chungu Xia, Jing Chen. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2-and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts[J]. Chinese Journal of Catalysis,
;2016, 37(5): 700-710.
doi:
10.1016/S1872-2067(15)61080-4
-
Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass-derived furfuryl alcohol to 1,2-pentanediol and 1,5-pentanediol. A Cu-Al2O3 catalyst with 10 wt% Cu loading prepared by a co-precipitation method exhibited the best performance in terms of producing pentanediols compared with the other materials. This catalyst generated an 85.8% conversion and a 70.3% combined selectivity for the target pentanediols at 413 K and 8 MPa H2 over an 8-h reaction. The catalyst could also be recycled over repeated reaction trials without any significant decrease in productivity. Characterizations with X-ray diffraction, NH3/CO2-temperature programmed desorption, N2 adsorption, transmission electron microscopy and N2O chemisorption demonstrated that intimate and effective interactions between Cu particles and the acidic Al2O3 support in this material greatly enhanced its activity and selectivity. The promotion of the hydrogenolysis reaction was found to be especially sensitive to the Cu particle size, and the catalyst with Cu particles 1.9 to 2.4 nm in size showed the highest turnover frequency during the synthesis of pentanediols.
-
-
-
[1]
[1] A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, 2411-2502.
-
[2]
[2] P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538-1558.
-
[3]
[3] C. Z. Li, X. C. Zhao, A. Q. Wang, G. W. Huber, T. Zhang, Chem. Rev., 2015, 115, 11559-11624.
-
[4]
[4] R. Karinen, K. Vilonen, M. Niemelä, ChemSusChem, 2011, 4, 1002-1016.
-
[5]
[5] I. Agirrezabal-Telleria, F. Hemmann, C. Jäger, P. L. Arias, E. Kemnitz, J. Catal., 2013, 305, 81-91.
-
[6]
[6] K. Yan, G. S. Wu, T. Lafleur, C. Jarvis, Renew. Sust. Energ. Rev., 2014, 38, 663-676.
-
[7]
[7] M. Besson, P. Gallezot, C. Pinel, Chem. Rev., 2014, 114, 1827-1870.
-
[8]
[8] Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal., 2013, 3, 2655-2668.
-
[9]
[9] M. Chia, Y. J. Pagán-Torres, D. Hibbitts, Q. H. Tan, H. N. Pham, A. K. Datye, M. Neurock, R. J. Davis, J. A. Dumesic, J. Am. Chem. Soc., 2011, 133, 12675-12689.
-
[10]
[10] T. Mizugaki, T. Yamakawa, Y. Nagatsu, Z. Maeno, T. Mitsudome, K. Jitsukawa, K. Kaneda, ACS Sust. Chem. Eng., 2014, 2, 2243-2247.
-
[11]
[11] S. Bhogeswararao, D. Srinivas, J. Catal., 2015, 327, 65-77.
-
[12]
[12] S. S. Li, N. Li, G. Y. Li, L. Li, A. Q. Wang, Y. Cong, X. D. Wang, T. Zhang, Green Chem., 2015, 17, 3644-3652.
-
[13]
[13] M. J. Climent, A. Corma, S. Iborra, Green Chem., 2014, 16, 516-547.
-
[14]
[14] J. Lee, S. P. Burt, C. A. Carrero, A. C. Alba-Rubio, I. Ro, B. J. O'Neill, H. J. Kim, D. H. K. Jackson, T. F. Kuech, I. Hermans, J. A. Dumesic, G. W. Huber, J. Catal., 2015, 330, 19-27.
-
[15]
[15] S. Koso, I. Furikado, A. Shimao, T. Miyazawa, K. Kunimori, K. Tomishige, Chem. Commun., 2009, 2035-2037.
-
[16]
[16] W. J. Xu, H. F. Wang, X. H. Liu, J. W. Ren, Y. Q. Wang, G. Z. Lu, Chem. Commun., 2011, 47, 3924-3926.
-
[17]
[17] B. Zhang, Y. L. Zhu, G. Q. Ding, H. Y. Zheng, Y. W. Li, Green Chem., 2012, 14, 3402-3409.
-
[18]
[18] B. Pholjaroen, N. Li, Y. Huang, L. Li, A. Wang, T. Zhang, Catal. Today, 2015, 245, 93-99.
-
[19]
[19] S. B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Green Chem., 2014, 16, 617-626.
-
[20]
[20] S. B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Catal. Sci. Technol., 2014, 4, 2535-2549.
-
[21]
[21] S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, K. Tomishige, J. Catal., 2009, 267, 89-92.
-
[22]
[22] O. Koch, A. Köckritz, M. Kant, A. Martin, A. Schöning, U. Armbruster, M. Bartoszek, S. Evert, B. Lange, R. Bienert, US Patent 20 140 066 666, 2012.
-
[23]
[23] K. Y. Chen, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, ChemCatChem, 2010, 2, 547-555.
-
[24]
[24] K. Y. Chen, K. Mori, H. Watanabe, Y. Nakagawa, K. Tomishige, J. Catal., 2012, 294, 171-183.
-
[25]
[25] H. Adkins, R. Connor, J. Am. Chem. Soc., 1931, 53, 1091-1095.
-
[26]
[26] Z. W. Huang, J. Chen, Y. Q. Jia, H. L. Liu, C. G. Xia, H. C. Liu, Appl. Catal. B, 2014, 147, 377-386.
-
[27]
[27] H. L. Liu, Z. W. Huang, C. G. Xia, Y. Q. Jia, J. Chen, H. C. Liu, ChemCatChem, 2014, 6, 2918-2928.
-
[28]
[28] Z. W. Huang, F. Cui, H. X. Kang, J. Chen, X. Z. Zhang, C. G. Xia, Chem. Mater., 2008, 20, 5090-5099.
-
[29]
[29] H. L. Liu, Z. W. Huang, Z. B. Han, K. L. Ding, H. C. Liu, C. G. Xia, J. Chen, Green Chem., 2015, 17, 4281-4290.
-
[30]
[30] H. L. Liu, Z. W. Huang, F. Zhao, F. Cui, X. M. Li, C. G. Xia, J. Chen, Catal. Sci. Technol., 2016, 6, 668-671.
-
[31]
[31] J. Tuteja, H. Choudhary, S. Nishimura, K. Ebitani, ChemSusChem, 2014, 7, 96-100.
-
[32]
[32] C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J. W. Geus, J. Catal., 1991, 131, 178-189.
-
[33]
[33] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612-3620.
-
[34]
[34] X. H. He, H. C. Liu, Catal. Today, 2014, 233, 133-139.
-
[35]
[35] R. A. Van Santen, Acc. Chem. Res., 2009, 42, 57-66.
-
[36]
[36] S. Wang, K. H. Yin, Y. C. Zhang, H. C. Liu, ACS Catal., 2013, 3, 2112-2121.
-
[37]
[37] S. Sitthisa, T. Sooknoi, Y. G. Ma, P. B. Balbuena, D. E. Resasco, J. Catal., 2011, 277, 1-13.
-
[38]
[38] R. S. Rao, A. B. Walters, M. A. Vannice, J. Phys. Chem. B, 2005, 109, 2086-2092.
-
[39]
[39] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612-3620.
-
[40]
[40] M. A. Mellmer, J. M. R. Gallo, D. M. Alonso, J. A. Dumesic, ACS Catal., 2015, 5, 3354-3359.
-
[41]
[41] J. Yang, H. Y. Zheng, Y. L. Zhu, G. W. Zhao, C. H. Zhang, B. T. Teng, H. W. Xiang, Y. W. Li, Catal. Commun., 2004, 5, 505-510.
-
[42]
[42] J. Lessard, J. F. Morin, J. F. Wehrung, D. Magnin, E. Chornet, Top. Catal., 2010, 53, 1231-1234.
-
[43]
[43] S. Sitthisa, W. An, D.E. Resasco, J. Catal., 2011, 284, 90-101.
-
[44]
[44] S. G. Wang, V. Vorotnikov, D. G. Vlachos, Green Chem., 2014, 16, 736-747.
-
[45]
[45] M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D. G. Vlachos, B. J. Xu, ACS Catal., 2015, 5, 3988-3994.
-
[1]
-
-
-
[1]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[2]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[3]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[4]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[7]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[8]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[9]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[10]
Yiling Wu , Peiyao Jin , Shenyue Tian , Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034
-
[11]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[12]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[13]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[14]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[15]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[16]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[17]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[18]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[19]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[20]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(409)
- HTML views(30)