Citation: Ruiben Jin, Xiaojia Jiang, Yangyuan Zhou, Jianfu Zhao. Microspheres of graphene oxide coupled to N-doped Bi2O2CO3 for visible light photocatalysis[J]. Chinese Journal of Catalysis, ;2016, 37(5): 760-768. doi: 10.1016/S1872-2067(15)61079-8 shu

Microspheres of graphene oxide coupled to N-doped Bi2O2CO3 for visible light photocatalysis

  • Corresponding author: Ruiben Jin, 
  • Received Date: 26 November 2015
    Available Online: 26 February 2016

    Fund Project: 国家自然科学基金(21277097) (21277097)“十二五”国家科技支撑计划重点项目(2012BAJ21B01). (2012BAJ21B01)

  • Hierarchical microspheres of a graphene oxide (GO) coupled to N-doped (BiO)2CO3 composite (N-BOC-GO) was synthesized by a simple hydrothermal approach. The N-BOC-GO composite gave enhancement in photocatalytic activity compared to the pure BOC and N-BOC samples. With 1.0 wt% GO, 62% NO removal was obtained with N-BOC-GO. The factors enhancing the photocatalytic performance were the high electron-withdrawing ability and high conductivity of GO and improved visible light-harvesting ability of N-BOC-GO with a 3D hierarchical architecture due to the surface scattering and reflecting (SSR) effect. An effective charge transfer from N-BOC to GO was demonstrated by the much weakened photoluminescene intensity of the N-BOC-GO composite. This work highlights the potential application of GO-based photocatalysts in air purification.
  • 加载中
    1. [1]

      [1] W. A. Jury, H. Vaux Jr, Proceed. Nat. Acad. Sci. USA, 2005, 102, 15715-15720.

    2. [2]

      [2] J. C. Swarbrick, U. Skyllberg, T. Karlsson, P. Glatzel, Inorg. Chem., 2009, 48, 10748-10756.

    3. [3]

      [3] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.

    4. [4]

      [4] G. H. Dong, W. K. Ho, Y. H. Li, L. Z. Zhang, Appl. Catal. B, 2015, 174-175, 477-485.

    5. [5]

      [5] X. X. Xu, C. Randorn, P. Efstathiou, J. T. S. Irvine, Nat. Mater., 2012, 11, 595-598.

    6. [6]

      [6] D. J. Martin, N. Umezawa, X. W. Chen, J. H. Ye, J. W. Tang, Energy Environ. Sci., 2013, 6, 3380-3386.

    7. [7]

      [7] S. X. Ouyang, H. Tong, N. Umezawa, J. Y. Cao, P. Li, Y. P. Bi, Y. J. Zhang, J. H. Ye, J. Am. Chem. Soc., 2012, 134, 1974-1977.

    8. [8]

      [8] J. Jiang, K. Zhao, X. Y. Xiao, L. Z. Zhang, J. Am. Chem. Soc., 2012, 134, 4473-4476.

    9. [9]

      [9] J. W. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc., 2008, 130, 13885-13891.

    10. [10]

      [10] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev., 1995, 95, 69-96.

    11. [11]

      [11] A. Fujishima, X. T. Zhang, C. R. Chim., 2006, 9, 750-760.

    12. [12]

      [12] A. Fujishima, X. T. Zhang, D. A. Tryk, Int. J. Hydrogen Energy, 2007, 32, 2664-2672.

    13. [13]

      [13] A. J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev., 2004, 248, 1165-1179.

    14. [14]

      [14] F. Dong, W. K. Ho, S. C. Lee, Z. B. Wu, M. Fu, S. C. Zou, Y. Huang, J. Mater. Chem., 2011, 21, 12428-12436.

    15. [15]

      [15] F. Dong, Y. J. Sun, M. Fu, W. K. Ho, S. C. Lee, Z. B. Wu, Langmuir, 2012, 28, 766-773.

    16. [16]

      [16] F. Dong, R. Wang, X. W. Li, W. K. Ho, Appl. Surf. Sci., 2014, 319, 256-264.

    17. [17]

      [17] Q. J Xiang, J. G. Yu, M. Jaroniec, Chem. Soc. Rev., 2012, 41, 782-796.

    18. [18]

      [18] Q. J Xiang, B. Cheng, J. G. Yu, Angew. Chem. Int. Ed., 2015, 54, 11350-11366.

    19. [19]

      [19] B. Yuan, J. X. Wei, T. J. Hu, H. B. Yao, Z. H. Jiang, Z. W. Fang, Z. Y. Chu, Chin. J. Catal., 2015, 36, 1009-1016.

    20. [20]

      [20] Y. H. Zhang, B. Shen, H. W. Huang, Y. He, B. Fei, F. Z. Lv, Appl. Surf. Sci., 2014, 319, 272-277.

    21. [21]

      [21] W. D. Zhang, F. Dong, W. Zhang, Appl. Surf. Sci., 2015, 358, 75-83.

    22. [22]

      [22] Q. Li, X. Li, S. Wageh, A. A. Al-Ghamdi, J. G. Yu, Adv. Energy Mater., 2015, 5, 1500010-1500037.

    23. [23]

      [23] Y. L. Zhang, D. Y. Li, Y. G. Zhang, X. F. Zhou, S. J. Guo, L. B. Yang, J. Mater. Chem. A, 2014, 2, 8273-8280.

    24. [24]

      [24] P. Madhusudan, J. G. Yu, W. G. Wang, B. Cheng, G. Liu, Dalton Trans., 2012, 41, 14345-14353.

    25. [25]

      [25] F. Dong, S. C. Lee, Z. B. Wu, Y. Huang, M. Fu, W. K. Ho, S. C. Zou, B. Wang, J. Hazard. Mater., 2011, 195, 346-354.

    26. [26]

      [26] F. Dong, H. T. Liu, W. K. Ho, M. Fu, Z. B. Wu, Chem. Eng. J., 2013, 214, 198-207.

    27. [27]

      [27] F. Dong, T. Xiong, Z. W. Zhao, Y. J. Sun, M. Fu, CrystEngComm, 2013, 15, 10522-10532.

    28. [28]

      [28] W. L. Cen, T. Xiong, C. Y. Tang, S. D. Yuan, F. Dong, Ind. Eng. Chem. Res., 2014, 53, 15002-15011.

    29. [29]

      [29] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev., 2010, 39, 228-240.

    30. [30]

      [30] T. Szabó, E. Tombaćz, E. Illés, I. Dékány, Carbon, 2006, 44, 537-545.

    31. [31]

      [31] Q. Y. Li, H. T. Liu, F. Dong, M. Fu, J. Colloid Interface Sci., 2013, 408, 33-42.

    32. [32]

      [32] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, Roberto Car, Nano Lett., 2008, 8, 36-41.

    33. [33]

      [33] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603-619.

    34. [34]

      [34] T. Xiong, F. Dong, Z. B. Wu, RSC Adv., 2014, 4, 56307-56312.

    35. [35]

      [35] A. B. Murphy, Sol. Energy Mater. Sol. Cells, 2007, 91, 1326-1337.

    36. [36]

      [36] G. G. Zhang, M. W. Zhang, X. X. Ye, X. Q. Qiu, S. Lin, X. C. Wang, Adv. Mater., 2014, 26, 805-809.

    37. [37]

      [37] F. Dong, Y. H. Li, Z. Y. Wang, W. K. Ho, Appl. Surf. Sci., 2015, 358, 393-403.

    38. [38]

      [38] V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská, M. Kormunda, Chem. Cent. J., 2013, 7, 41-52.

    39. [39]

      [39] F. Dong, T. Xiong, Y. J. Sun, H. W. Huang, Z. B. Wu, J. Mater. Chem. A, 2015, 3, 18466-18474.

    40. [40]

      [40] T. Xiong, H. W. Huang, Y. J. Sun, F. Dong, J. Mater. Chem. A, 2015, 3, 6118-6127.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(1)
  • Abstract views(411)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return