Citation: Jixing Liu, Jian Liu, Zhen Zhao, Weiyu Song, Yuechang Wei, Aijun Duan, Guiyuan Jiang. Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature[J]. Chinese Journal of Catalysis, ;2016, 37(5): 750-759. doi: 10.1016/S1872-2067(15)61072-5 shu

Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature

  • Corresponding author: Jian Liu, 
  • Received Date: 10 January 2016
    Available Online: 22 February 2016

    Fund Project: 国家自然科学基金(21376261,21173270) (21376261,21173270)国家高技术研究发展计划(863计划,2015AA034603) (863计划,2015AA034603)北京市自然科学基金(2142027) (2142027)中国石油大学(北京)基金(20130007110007,2462015QZDX04). (北京)基金(20130007110007,2462015QZDX04)

  • A series of meso-microporous copper-supporting chabazite molecular sieve (Cu-SAPO-34) catalysts with excellent performance in low-temperature ammonia selective catalytic reduction (NH3-SCR) have been synthesized via a one-pot hydrothermal crystallization method. The physicochemical properties of the catalysts were characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption measurements, X-ray diffraction, 27Al magic angle spinning nuclear magnetic resonance, diffuse reflectance ultraviolet-visible spectroscopy, inductively coupled plasma-atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction measurements, and electron paramagnetic resonance analysis. The formation of micro-mesopores in the Cu-SAPO-34 catalysts decreases diffusion resistance and greatly improves the accessibility of reactants to catalytic active sites. The main active sites for NH3-SCR reaction are the isolated Cu2+ species displaced into the ellipsoidal cavity of the Cu-SAPO-34 catalysts.
  • 加载中
    1. [1]

      [1] M. G. Schultz, T. Diehl, G. P. Brasseur, W. Zittel, Science, 2003, 302, 624-627.

    2. [2]

      [2] K. Skalska, J. S. Miller, S. Ledakowicz, Sci. Total Environ., 2010, 408, 3976-3989.

    3. [3]

      [3] R. J. Farrauto, R. M. Heck, Catal. Today, 1999, 51, 351-360.

    4. [4]

      [4] J. Dedecek, O. Bortnovsky, A. Vondrova, B. Wichterlova, J. Catal., 2001, 200, 160-170.

    5. [5]

      [5] L. Xu, C. Shi, Z. S. Zhang, H. Gies, F. S. Xiao, D. De Vos, T. Yokoi, X. H. Bao, M. Feyen, S. Maurer, B. Yilmazh, U. Müller, W. P. Zhang, Microporous Mesoporous Mater., 2014, 200, 304-310.

    6. [6]

      [6] N. Wilken, R. Nedyalkova, K. Kamasamudram, J. H. Li, N. W. Currier, R. Vedaiyan, A. Yezerets, L. Olsson, Top. Catal., 2013, 56, 317-322.

    7. [7]

      [7] Y. P. Chen, D. G. Cheng, F. Q. Chen, X. L. Zhan, Progr. Chem., 2014, 26, 248-258.

    8. [8]

      [8] P. N. R. Vennestrom, T. V. W. Janssens, A. Kustov, M. Grill, A. Puig-Molina, L. F. Lundegaard, R. R. Tiruvalam, P. Concepcion, A. Corma, J. Catal., 2014, 309, 477-490.

    9. [9]

      [9] L. J. Xie, F. D. Liu, X. Shi, F. S. Xiao, H. He, Appl. Catal. B, 2016, 179, 206-2012.

    10. [10]

      [10] D. W. Fickel, E. D'Addio, J. A. Lauterbach, R. F. Lobo, Appl. Catal. B, 2011, 102, 441-448.

    11. [11]

      [11] B. Z. Zhan, E. Iglesia, Angew. Chem. Int. Ed., 2007, 46, 3697-3700.

    12. [12]

      [12] R. Martínez-Franco, M. Moliner, C. Franch, A. Kustov, A. Corma, Appl. Catal. B, 2012, 127, 273-280.

    13. [13]

      [13] F. Gao, E. D. Walter, N. M. Washton, J. Szanyi, C. H. F. Peden, ACS Catal., 2013, 3, 2083-2093.

    14. [14]

      [14] L. Ma, Y. S. Cheng, G. Cavataio, R. W. McCabe, L. X. Fu, J. H. Li, Chem. Eng. J., 2013, 225, 323-330.

    15. [15]

      [15] J. C. Groen, L. A. A. Peffer, J. Pérez-Ramírez, Microporous Mesoporous Mater., 2003, 60, 1-17.

    16. [16]

      [16] N. N. Gao, S. J. Xie, S. L. Liu, W. J. Xin, Y. Gao, X. J. Li, H. Wei, H. Liu, L. Y. Xu, Microporous Mesoporous Mater., 2015, 212, 1-7.

    17. [17]

      [17] H. J. Wei, S. J. Xie, N. N. Gao, K. F. Liu, X. H. Liu, W. J. Xin, X. J. Li, S. L. Liu, L. Y. Xu, Appl. Catal. A, 2015, 495, 152-161.

    18. [18]

      [18] Y. Cao, S. Zou, L. Lan, Z. Z. Yang, H. D. Xu, T. Lin, M. C. Gong, Y. Q. Chen, J. Mol. Catal. A, 2015, 398, 304-311.

    19. [19]

      [19] L. J. Xie, F. D. Liu, L. M. Ren, X. Y. Shi, F. S. Xiao, H. He, Environ. Sci. Technol., 2014, 48, 566-572.

    20. [20]

      [20] B. K. Kwak, D. S. Park, Y. S. Yun, J. Yi, Catal. Commun., 2012, 24, 90-95.

    21. [21]

      [21] M. Briend, R. Vomscheid, M. J. Peltre, P. P. Man, D. Barthomeuf, J. Phys. Chem., 1995, 99, 8270-8276.

    22. [22]

      [22] T. Fjermestad, S. Svelle, O. Swang, J. Phys. Chem. C, 2013, 117, 13442-13451.

    23. [23]

      [23] X. X. Wang, W. Zhang, S. Q. Guo, L. F. Zhao, H. W. Xiang, J. Brazil. Chem. Soc., 2013, 24, 1180-1187.

    24. [24]

      [24] J. H. Kwak, D. Tran, S. D. Burton, J. Szanyi, J. H. Lee, C. H. F. Peden, J. Catal., 2012, 287, 203-209.

    25. [25]

      [25] S. F. Kang, Z. Jiang, Z. P. Hao, Acta Phys.-Chim. Sin., 2005, 21, 278-282.

    26. [26]

      [26] Z. Liu, M. D. Amiridis, Y. Chen, J. Phys. Chem. B, 2005, 109, 1251-1255.

    27. [27]

      [27] M. Zabilskiy, P. Djinović, B. Erjavec, G. Dražić, A. Pintar, Appl. Catal. B, 2015, 163, 113-122.

    28. [28]

      [28] H. Praliaud, S. Mikhailenko, Z. Chajar, M. Primet, Appl. Catal. B, 1998, 16, 359-374.

    29. [29]

      [29] L. Gang, J. van Grondelle, B. G. Anderson, R. A. van Santen, J. Catal., 1999, 186, 100-109.

    30. [30]

      [30] R. P. Vasquez, Surf. Sci. Spectra, 1998, 5, 262-266.

    31. [31]

      [31] C. Z. Sun, J. Zhu, Y. Y. Lü, L. Qi, B. Liu, F. Gao, K. Q. Sun, L. Dong, Y. Chen, Appl. Catal. B, 2011, 103, 206-220.

    32. [32]

      [32] F. Gao, E. D. Walter, N. M. Washton, J. Szanyi, C. H. F. Peden, Appl. Catal. B, 2015, 162, 501-514.

    33. [33]

      [33] R. Martínez-Franco, M. Moliner, P. Concepcion, J. R. Thogersen, A. Corma, J. Catal., 2014, 314, 73-82.

    34. [34]

      [34] S. K. Fan, J. J. Xue, T. Yu, D. Q. Fan, T. Hao, M. Q. Shen, W. Li, Catal. Sci. Technol., 2013, 3, 2357-2364.

    35. [35]

      [35] M. Zamadics, X. H. Chen, L. Kevan, J. Phys. Chem., 1992, 96, 2652-2657.

    36. [36]

      [36] J. J. Xue, X. Q. Wang, G. S. Qi, J. Wang, M. Q. Shen, W. Li, J. Catal., 2013, 297, 56-64.

    37. [37]

      [37] T. Yu, T. H. Hao, D. Q. Fan, J. Wang, M. Q. Shen, W. Li, J. Phys. Chem. C, 2014, 118, 6565-6575.

    38. [38]

      [38] C. H. Christensen, K. Johannsen, E. Tornqvist, I. Schmidt, H. Topsøeb, C. H. Christensen, Catal. Today, 2007, 128, 117-122.

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    20. [20]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

Metrics
  • PDF Downloads(0)
  • Abstract views(385)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return