Citation:
Qifu Huang, Wenzhi Li, Qizhao Lin, Dong Pi, Chao Hu, Chunyu Shao, Haitao Zhang. A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles[J]. Chinese Journal of Catalysis,
;2016, 37(5): 681-691.
doi:
10.1016/S1872-2067(15)61069-5
-
This paper reviews several important factors that influence the synthesis of dumbbell-like nanoparticles, which can significantly enhance the catalyst activity in catalytic combustion. The dumbbell-like nanoparticles discussed in this article refer to a hetero-structure with two nanoparticles of different materials in contact with each other. This nanostructure can be considered as a special intermediate between individual spherical nanoparticles and a core-shell nanostructure. Therefore, the synthesis of dumbbell-like nanoparticles is more difficult than other structures. The controllability of the synthesis process, the nanoparticle size and size distribution, and the morphology of the final products depend on many factors: the seed size and size ratio could be used to influence the controllability of epitaxial growth. The component sizes and size distribution could be varied by carefully controlling the reaction temperature and reaction time. The morphology of the dumbbell-like nanoparticles is closely related to the solvent polarity, the precursor ratio, the lattice mismatch between the two components, and the surfactant concentration. Some related synthesis methods are also briefly introduced in each section to facilitate understanding. This summary will benefit the development of new dumbbell-like nanoparticles with various components, which have great potential in catalytic combustion of more dysoxidizable gases.
-
-
-
[1]
[1] C. Wang, C. J. Xu, H. Zeng, S. H. Sun, Adv. Mater., 2009, 21, 3045-3052.
-
[2]
[2] W. L. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang, M. Swihart, P. N. Prasad, Nano Lett., 2006, 6, 875-881.
-
[3]
[3] H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. H. Sun, Nano Lett., 2005, 5, 379-382.
-
[4]
[4] R. Costi, G. Cohen, A. Salant, E. Rabani, U. Banin, Nano Lett., 2009, 9, 2031-2039.
-
[5]
[5] A. Wood, M. Giersig, P. Mulvaney, J. Phys. Chem. B, 2001, 105, 8810-8815.
-
[6]
[6] M. Haruta, Gold Bull., 2004, 37, 27-36.
-
[7]
[7] Y. Q. Li, Q. Zhang, A. V. Nurmikko, S. H. Sun, Nano Lett., 2005, 5, 1689-1692.
-
[8]
[8] A. Figuerola, A. Fiore, R. Di Corato, A. Falqui, C. Giannini, E. Micotti, A. Lascialfari, M. Corti, R. Cingolani, T. Pellegrino, J. Am. Chem. Soc., 2008, 130, 1477-1487.
-
[9]
[9] T. Teranishi, A. Wachi, M. Kanehara, T. Shoji, N. Sakuma, M. Nakaya, J. Am. Chem. Soc., 2008, 130, 4210-4211.
-
[10]
[10] N. A. Frey, M. H. Phan, H. Srikanth, S. Srinath, C. Wang, S. Sun, J. Appl. Phys., 2009, 105, 07B502.
-
[11]
[11] H. W. Gu, R. K. Zheng, X. X. Zhang, B. Xu, J. Am. Chem. Soc., 2004, 126, 5664-5665.
-
[12]
[12] J. Jiang, H. W. Gu, H. L. Shao, E. Devlin, G. C. Papaefthymiou, J. Y. Ying, Adv. Mater., 2008, 20, 4403-4407.
-
[13]
[13] K. W. Kwon, M. Shim, J. Am. Chem. Soc., 2005, 127, 10269-10275.
-
[14]
[14] Y. Wei, R. Klajn, A. O. Pinchuk, B. A. Grzybowski, Small, 2008, 4, 1635-1639.
-
[15]
[15] E. Elmalem, A. E. Saunders, R. Costi, A. Salant, U. Banin, Adv. Mater., 2008, 20, 4312-4317.
-
[16]
[16] C. Wang, H. Daimon, S. Sun, Nano Lett., 2009, 9, 1493-1496.
-
[17]
[17] H. W. Gu, Z. M. Yang, J. H. Gao, C. K. Chang, B. Xu, J. Am. Chem. Soc., 2005, 127, 34-35.
-
[18]
[18] J. S. Choi, Y. W. Jun, S. I. Yeon, H. C. Kim, J. S. Shin, J. Cheon, J. Am. Chem. Soc., 2006, 128, 15982-15983.
-
[19]
[19] Z. Ma, S. Dai, Nano Res., 2011, 4, 3-32.
-
[20]
[20] A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science, 2008, 321, 1331-1335.
-
[21]
[21] A. Stephen K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed., 2006, 45, 7896-7936.
-
[22]
[22] L. M. Molina, B. Hammer, Phys. Rev. Lett., 2003, 90, 206102/1-206102/4.
-
[23]
[23] Z. P. Liu, X. Q. Gong, J. Kohanoff, C. Sanchez, P. Hu, Phys. Rev. Lett., 2003, 91, 266102/1-266102/4.
-
[24]
[24] S. Laursen, S. Linic, Phys. Rev. Lett., 2006, 97, 026101/1-026101/4.
-
[25]
[25] C. Wang, H. F. Yin, S. Dai, S. H. Sun, Chem. Mater., 2010, 22, 3277-3282.
-
[26]
[26] L. Zhang, Y. H. Dou, H. C. Gu, J. Colloid Interface Sci., 2006, 297, 660-664.
-
[27]
[27] H. F. Yin, C. Wang, H. G. Zhu, S. H. Overbury, S. H. Sun, S. Dai, Chem. Commun., 2008, 4357-4359.
-
[28]
[28] Y. Lee, M. A. Garcia, N. A. Frey Huls, S. H. Sun, Angew. Chem. Int. Ed., 2010, 49, 1271-1274.
-
[29]
[29] X. Q. Huang, Y. J. Li, H. L. Zhou, X. Zhong, X. F. Duan, Y. Huang, Chem.-Eur. J., 2012, 18, 9505-9510.
-
[30]
[30] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746-749.
-
[31]
[31] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. A. Attard, G. J. Hutchings, Top. Catal., 2004, 27, 131-136.
-
[32]
[32] R. Zanella, C. Louis, S. Giorgio, R. Touroude, J. Catal., 2004, 223, 328-339.
-
[33]
[33] C. Milone, R. Ingoglia, S. Galvagno, Gold Bull., 2006, 39, 54-65.
-
[34]
[34] A. Abad, A. Corma, H. García, Pure Appl. Chem., 2007, 79, 1847-1854.
-
[35]
[35] A. Corma, P. Concepción, P. Serna, Angew. Chem. Int. Ed., 2007, 46, 7266-7269.
-
[36]
[36] A. Corma, P. Serna, H. García, J. Am. Chem. Soc., 2007, 129, 6358-6359.
-
[37]
[37] H. Zeng, J. Li, J. P. Liu, Z. L. Wang, S. H. Sun, Nature, 2002, 420, 395-398.
-
[38]
[38] C. J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin, Nature, 1998, 396, 444-446.
-
[39]
[39] S. Peng, Y. Lee, C. Wang, H. F. Yin, S. Dai, S. H. Sun, Nano Res., 2008, 1, 229-234.
-
[40]
[40] V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc., 1950, 72, 4847-4854.
-
[41]
[41] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci., 2000, 30, 545-610.
-
[42]
[42] S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J. Am. Chem. Soc., 2004, 126, 273-279.
-
[43]
[43] S. H. Sun, H. Zeng, J. Am. Chem. Soc., 2002, 124, 8204-8205.
-
[44]
[44] Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell, Science, 2003, 299, 226-229.
-
[45]
[45] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Science, 2002, 298, 1006-1009.
-
[46]
[46] X. L. Sun, S. J. Guo, Y. Liu, S. H. Sun, Nano Lett., 2012, 12, 4859-4863.
-
[47]
[47] M. S. Jin, H. Zhang, J. G. Wang, X. L. Zhong, N. Lu, Z. Y. Li, Z. X. Xie, M. J. Kim, Y. N. Xia, ACS Nano, 2012, 6, 2566-2573.
-
[48]
[48] F. R. Fan, D. Y. Liu, Y. F. Wu, S. Duan, Z. X. Xie, Z. Y. Jiang, Z. Q. Tian, J. Am. Chem. Soc., 2008, 130, 6949-6951.
-
[49]
[49] Y. H. Chen, H. H. Hung, M. H. Huang, J. Am. Chem. Soc., 2009, 131, 9114-9121.
-
[50]
[50] J. Jung, D. Seo, G. Park, S. Ryu, H. Song, J. Phys. Chem. C, 2010, 114, 12529-12534.
-
[51]
[51] D. Seo, J. H. Park, J. Jung, S. M. Park, S. Ryu, J. Kwak, H. Song, J. Phys. Chem. C, 2009, 113, 3449-3454.
-
[52]
[52] N. R. Sieb, N. Wu, E. Majidi, R. Kukreja, N. R. Branda, B. D. Gates, ACS Nano, 2009, 3, 1365-1372.
-
[53]
[53] W. W. He, X. C. Wu, J. B. Liu, K. Zhang, W. G. Chu, L. L. Feng, X. N. Hu, W. Zhou, S. S. Xie, J. Phys. Chem. C, 2009, 113, 10505-10510.
-
[54]
[54] F. Wetz, K. Soulantica, A. Falqui, M. Respaud, E. Snoeck, B. Chaudret, Angew. Chem. Int. Ed., 2007, 46, 7079-7081.
-
[55]
[55] L. Carbone, P. D. Cozzoli, Nano Today, 2010, 5, 449-493.
-
[56]
[56] J. T. Zhang, Y. Tang, K. Lee, M. Ouyang, Science, 2010, 327, 1634-1638.
-
[57]
[57] N. E. Motl, J. F. Bondi, R. E. Schaak, Chem. Mater., 2012, 24, 1552-1554.
-
[58]
[58] Y. Yang, W. F. Wang, X. L. Li, W. Chen, N. N. Fan, C. Zou, X. Chen, X. J. Xu, L. J. Zhang, S. M. Huang, Chem. Mater., 2013, 25, 34-41.
-
[59]
[59] S. R. Brankovic, J. X. Wang, R. R. Adžić, Surf. Sci., 2001, 474, L173-L179.
-
[60]
[60] H. Jing, H. Wang, CrystEngComm, 2014, 16, 9469-9477.
-
[61]
[61] B. Nikoobakht, M. A. El-Sayed, Chem. Mater., 2003, 15, 1957-1962.
-
[62]
[62] T. Ming, W. Feng, Q. Tang, F. Wang, L. D. Sun, J. F. Wang, C. H. Yan, J. Am. Chem. Soc., 2009, 131, 16350-16351.
-
[63]
[63] J. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Y. Li, C. A. Mirkin, J. Am. Chem. Soc., 2010, 132, 14012-14014.
-
[64]
[64] L. Carbone, S. Kudera, C. Giannini, G. Ciccarella, R. Cingolani, P. D. Cozzoli, L. Manna, J. Mater. Chem., 2006, 16, 3952-3956.
-
[65]
[65] R. Sato, M. Kanehara, T. Teranishi, Small, 2011, 7, 469-473.
-
[1]
-
-
-
[1]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[2]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[3]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[4]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[5]
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
-
[6]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[7]
Ying Chen , Ronghua Yan , Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066
-
[8]
Qi Wang , Yuqing Liu , Jiefei Wang , Yuan-Yuan Ma , Jing Du , Zhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120
-
[9]
Kangjuan Cheng , Chunxiao Liu , Youpeng Wang , Qiu Jiang , Tingting Zheng , Xu Li , Chuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112
-
[10]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[11]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[12]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[13]
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
-
[14]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[15]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024
-
[16]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[17]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[18]
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
-
[19]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[20]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(559)
- HTML views(36)
Login In
DownLoad: