Citation: Qifu Huang, Wenzhi Li, Qizhao Lin, Dong Pi, Chao Hu, Chunyu Shao, Haitao Zhang. A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles[J]. Chinese Journal of Catalysis, ;2016, 37(5): 681-691. doi: 10.1016/S1872-2067(15)61069-5 shu

A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles

  • Corresponding author: Wenzhi Li, 
  • Received Date: 9 January 2016
    Available Online: 24 February 2016

    Fund Project: 国家自然科学基金(51376171) (51376171)安徽省杰出青年科学基金(1508085J01). (1508085J01)

  • This paper reviews several important factors that influence the synthesis of dumbbell-like nanoparticles, which can significantly enhance the catalyst activity in catalytic combustion. The dumbbell-like nanoparticles discussed in this article refer to a hetero-structure with two nanoparticles of different materials in contact with each other. This nanostructure can be considered as a special intermediate between individual spherical nanoparticles and a core-shell nanostructure. Therefore, the synthesis of dumbbell-like nanoparticles is more difficult than other structures. The controllability of the synthesis process, the nanoparticle size and size distribution, and the morphology of the final products depend on many factors: the seed size and size ratio could be used to influence the controllability of epitaxial growth. The component sizes and size distribution could be varied by carefully controlling the reaction temperature and reaction time. The morphology of the dumbbell-like nanoparticles is closely related to the solvent polarity, the precursor ratio, the lattice mismatch between the two components, and the surfactant concentration. Some related synthesis methods are also briefly introduced in each section to facilitate understanding. This summary will benefit the development of new dumbbell-like nanoparticles with various components, which have great potential in catalytic combustion of more dysoxidizable gases.
  • 加载中
    1. [1]

      [1] C. Wang, C. J. Xu, H. Zeng, S. H. Sun, Adv. Mater., 2009, 21, 3045-3052.

    2. [2]

      [2] W. L. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang, M. Swihart, P. N. Prasad, Nano Lett., 2006, 6, 875-881.

    3. [3]

      [3] H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. H. Sun, Nano Lett., 2005, 5, 379-382.

    4. [4]

      [4] R. Costi, G. Cohen, A. Salant, E. Rabani, U. Banin, Nano Lett., 2009, 9, 2031-2039.

    5. [5]

      [5] A. Wood, M. Giersig, P. Mulvaney, J. Phys. Chem. B, 2001, 105, 8810-8815.

    6. [6]

      [6] M. Haruta, Gold Bull., 2004, 37, 27-36.

    7. [7]

      [7] Y. Q. Li, Q. Zhang, A. V. Nurmikko, S. H. Sun, Nano Lett., 2005, 5, 1689-1692.

    8. [8]

      [8] A. Figuerola, A. Fiore, R. Di Corato, A. Falqui, C. Giannini, E. Micotti, A. Lascialfari, M. Corti, R. Cingolani, T. Pellegrino, J. Am. Chem. Soc., 2008, 130, 1477-1487.

    9. [9]

      [9] T. Teranishi, A. Wachi, M. Kanehara, T. Shoji, N. Sakuma, M. Nakaya, J. Am. Chem. Soc., 2008, 130, 4210-4211.

    10. [10]

      [10] N. A. Frey, M. H. Phan, H. Srikanth, S. Srinath, C. Wang, S. Sun, J. Appl. Phys., 2009, 105, 07B502.

    11. [11]

      [11] H. W. Gu, R. K. Zheng, X. X. Zhang, B. Xu, J. Am. Chem. Soc., 2004, 126, 5664-5665.

    12. [12]

      [12] J. Jiang, H. W. Gu, H. L. Shao, E. Devlin, G. C. Papaefthymiou, J. Y. Ying, Adv. Mater., 2008, 20, 4403-4407.

    13. [13]

      [13] K. W. Kwon, M. Shim, J. Am. Chem. Soc., 2005, 127, 10269-10275.

    14. [14]

      [14] Y. Wei, R. Klajn, A. O. Pinchuk, B. A. Grzybowski, Small, 2008, 4, 1635-1639.

    15. [15]

      [15] E. Elmalem, A. E. Saunders, R. Costi, A. Salant, U. Banin, Adv. Mater., 2008, 20, 4312-4317.

    16. [16]

      [16] C. Wang, H. Daimon, S. Sun, Nano Lett., 2009, 9, 1493-1496.

    17. [17]

      [17] H. W. Gu, Z. M. Yang, J. H. Gao, C. K. Chang, B. Xu, J. Am. Chem. Soc., 2005, 127, 34-35.

    18. [18]

      [18] J. S. Choi, Y. W. Jun, S. I. Yeon, H. C. Kim, J. S. Shin, J. Cheon, J. Am. Chem. Soc., 2006, 128, 15982-15983.

    19. [19]

      [19] Z. Ma, S. Dai, Nano Res., 2011, 4, 3-32.

    20. [20]

      [20] A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science, 2008, 321, 1331-1335.

    21. [21]

      [21] A. Stephen K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed., 2006, 45, 7896-7936.

    22. [22]

      [22] L. M. Molina, B. Hammer, Phys. Rev. Lett., 2003, 90, 206102/1-206102/4.

    23. [23]

      [23] Z. P. Liu, X. Q. Gong, J. Kohanoff, C. Sanchez, P. Hu, Phys. Rev. Lett., 2003, 91, 266102/1-266102/4.

    24. [24]

      [24] S. Laursen, S. Linic, Phys. Rev. Lett., 2006, 97, 026101/1-026101/4.

    25. [25]

      [25] C. Wang, H. F. Yin, S. Dai, S. H. Sun, Chem. Mater., 2010, 22, 3277-3282.

    26. [26]

      [26] L. Zhang, Y. H. Dou, H. C. Gu, J. Colloid Interface Sci., 2006, 297, 660-664.

    27. [27]

      [27] H. F. Yin, C. Wang, H. G. Zhu, S. H. Overbury, S. H. Sun, S. Dai, Chem. Commun., 2008, 4357-4359.

    28. [28]

      [28] Y. Lee, M. A. Garcia, N. A. Frey Huls, S. H. Sun, Angew. Chem. Int. Ed., 2010, 49, 1271-1274.

    29. [29]

      [29] X. Q. Huang, Y. J. Li, H. L. Zhou, X. Zhong, X. F. Duan, Y. Huang, Chem.-Eur. J., 2012, 18, 9505-9510.

    30. [30]

      [30] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746-749.

    31. [31]

      [31] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. A. Attard, G. J. Hutchings, Top. Catal., 2004, 27, 131-136.

    32. [32]

      [32] R. Zanella, C. Louis, S. Giorgio, R. Touroude, J. Catal., 2004, 223, 328-339.

    33. [33]

      [33] C. Milone, R. Ingoglia, S. Galvagno, Gold Bull., 2006, 39, 54-65.

    34. [34]

      [34] A. Abad, A. Corma, H. García, Pure Appl. Chem., 2007, 79, 1847-1854.

    35. [35]

      [35] A. Corma, P. Concepción, P. Serna, Angew. Chem. Int. Ed., 2007, 46, 7266-7269.

    36. [36]

      [36] A. Corma, P. Serna, H. García, J. Am. Chem. Soc., 2007, 129, 6358-6359.

    37. [37]

      [37] H. Zeng, J. Li, J. P. Liu, Z. L. Wang, S. H. Sun, Nature, 2002, 420, 395-398.

    38. [38]

      [38] C. J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin, Nature, 1998, 396, 444-446.

    39. [39]

      [39] S. Peng, Y. Lee, C. Wang, H. F. Yin, S. Dai, S. H. Sun, Nano Res., 2008, 1, 229-234.

    40. [40]

      [40] V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc., 1950, 72, 4847-4854.

    41. [41]

      [41] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci., 2000, 30, 545-610.

    42. [42]

      [42] S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J. Am. Chem. Soc., 2004, 126, 273-279.

    43. [43]

      [43] S. H. Sun, H. Zeng, J. Am. Chem. Soc., 2002, 124, 8204-8205.

    44. [44]

      [44] Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell, Science, 2003, 299, 226-229.

    45. [45]

      [45] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Science, 2002, 298, 1006-1009.

    46. [46]

      [46] X. L. Sun, S. J. Guo, Y. Liu, S. H. Sun, Nano Lett., 2012, 12, 4859-4863.

    47. [47]

      [47] M. S. Jin, H. Zhang, J. G. Wang, X. L. Zhong, N. Lu, Z. Y. Li, Z. X. Xie, M. J. Kim, Y. N. Xia, ACS Nano, 2012, 6, 2566-2573.

    48. [48]

      [48] F. R. Fan, D. Y. Liu, Y. F. Wu, S. Duan, Z. X. Xie, Z. Y. Jiang, Z. Q. Tian, J. Am. Chem. Soc., 2008, 130, 6949-6951.

    49. [49]

      [49] Y. H. Chen, H. H. Hung, M. H. Huang, J. Am. Chem. Soc., 2009, 131, 9114-9121.

    50. [50]

      [50] J. Jung, D. Seo, G. Park, S. Ryu, H. Song, J. Phys. Chem. C, 2010, 114, 12529-12534.

    51. [51]

      [51] D. Seo, J. H. Park, J. Jung, S. M. Park, S. Ryu, J. Kwak, H. Song, J. Phys. Chem. C, 2009, 113, 3449-3454.

    52. [52]

      [52] N. R. Sieb, N. Wu, E. Majidi, R. Kukreja, N. R. Branda, B. D. Gates, ACS Nano, 2009, 3, 1365-1372.

    53. [53]

      [53] W. W. He, X. C. Wu, J. B. Liu, K. Zhang, W. G. Chu, L. L. Feng, X. N. Hu, W. Zhou, S. S. Xie, J. Phys. Chem. C, 2009, 113, 10505-10510.

    54. [54]

      [54] F. Wetz, K. Soulantica, A. Falqui, M. Respaud, E. Snoeck, B. Chaudret, Angew. Chem. Int. Ed., 2007, 46, 7079-7081.

    55. [55]

      [55] L. Carbone, P. D. Cozzoli, Nano Today, 2010, 5, 449-493.

    56. [56]

      [56] J. T. Zhang, Y. Tang, K. Lee, M. Ouyang, Science, 2010, 327, 1634-1638.

    57. [57]

      [57] N. E. Motl, J. F. Bondi, R. E. Schaak, Chem. Mater., 2012, 24, 1552-1554.

    58. [58]

      [58] Y. Yang, W. F. Wang, X. L. Li, W. Chen, N. N. Fan, C. Zou, X. Chen, X. J. Xu, L. J. Zhang, S. M. Huang, Chem. Mater., 2013, 25, 34-41.

    59. [59]

      [59] S. R. Brankovic, J. X. Wang, R. R. Adžić, Surf. Sci., 2001, 474, L173-L179.

    60. [60]

      [60] H. Jing, H. Wang, CrystEngComm, 2014, 16, 9469-9477.

    61. [61]

      [61] B. Nikoobakht, M. A. El-Sayed, Chem. Mater., 2003, 15, 1957-1962.

    62. [62]

      [62] T. Ming, W. Feng, Q. Tang, F. Wang, L. D. Sun, J. F. Wang, C. H. Yan, J. Am. Chem. Soc., 2009, 131, 16350-16351.

    63. [63]

      [63] J. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Y. Li, C. A. Mirkin, J. Am. Chem. Soc., 2010, 132, 14012-14014.

    64. [64]

      [64] L. Carbone, S. Kudera, C. Giannini, G. Ciccarella, R. Cingolani, P. D. Cozzoli, L. Manna, J. Mater. Chem., 2006, 16, 3952-3956.

    65. [65]

      [65] R. Sato, M. Kanehara, T. Teranishi, Small, 2011, 7, 469-473.

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(0)
  • Abstract views(348)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return