Citation: Qifu Huang, Wenzhi Li, Qizhao Lin, Dong Pi, Chao Hu, Chunyu Shao, Haitao Zhang. A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles[J]. Chinese Journal of Catalysis, ;2016, 37(5): 681-691. doi: 10.1016/S1872-2067(15)61069-5 shu

A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles

  • Corresponding author: Wenzhi Li, 
  • Received Date: 9 January 2016
    Available Online: 24 February 2016

    Fund Project: 国家自然科学基金(51376171) (51376171)安徽省杰出青年科学基金(1508085J01). (1508085J01)

  • This paper reviews several important factors that influence the synthesis of dumbbell-like nanoparticles, which can significantly enhance the catalyst activity in catalytic combustion. The dumbbell-like nanoparticles discussed in this article refer to a hetero-structure with two nanoparticles of different materials in contact with each other. This nanostructure can be considered as a special intermediate between individual spherical nanoparticles and a core-shell nanostructure. Therefore, the synthesis of dumbbell-like nanoparticles is more difficult than other structures. The controllability of the synthesis process, the nanoparticle size and size distribution, and the morphology of the final products depend on many factors: the seed size and size ratio could be used to influence the controllability of epitaxial growth. The component sizes and size distribution could be varied by carefully controlling the reaction temperature and reaction time. The morphology of the dumbbell-like nanoparticles is closely related to the solvent polarity, the precursor ratio, the lattice mismatch between the two components, and the surfactant concentration. Some related synthesis methods are also briefly introduced in each section to facilitate understanding. This summary will benefit the development of new dumbbell-like nanoparticles with various components, which have great potential in catalytic combustion of more dysoxidizable gases.
  • 加载中
    1. [1]

      [1] C. Wang, C. J. Xu, H. Zeng, S. H. Sun, Adv. Mater., 2009, 21, 3045-3052.

    2. [2]

      [2] W. L. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang, M. Swihart, P. N. Prasad, Nano Lett., 2006, 6, 875-881.

    3. [3]

      [3] H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. H. Sun, Nano Lett., 2005, 5, 379-382.

    4. [4]

      [4] R. Costi, G. Cohen, A. Salant, E. Rabani, U. Banin, Nano Lett., 2009, 9, 2031-2039.

    5. [5]

      [5] A. Wood, M. Giersig, P. Mulvaney, J. Phys. Chem. B, 2001, 105, 8810-8815.

    6. [6]

      [6] M. Haruta, Gold Bull., 2004, 37, 27-36.

    7. [7]

      [7] Y. Q. Li, Q. Zhang, A. V. Nurmikko, S. H. Sun, Nano Lett., 2005, 5, 1689-1692.

    8. [8]

      [8] A. Figuerola, A. Fiore, R. Di Corato, A. Falqui, C. Giannini, E. Micotti, A. Lascialfari, M. Corti, R. Cingolani, T. Pellegrino, J. Am. Chem. Soc., 2008, 130, 1477-1487.

    9. [9]

      [9] T. Teranishi, A. Wachi, M. Kanehara, T. Shoji, N. Sakuma, M. Nakaya, J. Am. Chem. Soc., 2008, 130, 4210-4211.

    10. [10]

      [10] N. A. Frey, M. H. Phan, H. Srikanth, S. Srinath, C. Wang, S. Sun, J. Appl. Phys., 2009, 105, 07B502.

    11. [11]

      [11] H. W. Gu, R. K. Zheng, X. X. Zhang, B. Xu, J. Am. Chem. Soc., 2004, 126, 5664-5665.

    12. [12]

      [12] J. Jiang, H. W. Gu, H. L. Shao, E. Devlin, G. C. Papaefthymiou, J. Y. Ying, Adv. Mater., 2008, 20, 4403-4407.

    13. [13]

      [13] K. W. Kwon, M. Shim, J. Am. Chem. Soc., 2005, 127, 10269-10275.

    14. [14]

      [14] Y. Wei, R. Klajn, A. O. Pinchuk, B. A. Grzybowski, Small, 2008, 4, 1635-1639.

    15. [15]

      [15] E. Elmalem, A. E. Saunders, R. Costi, A. Salant, U. Banin, Adv. Mater., 2008, 20, 4312-4317.

    16. [16]

      [16] C. Wang, H. Daimon, S. Sun, Nano Lett., 2009, 9, 1493-1496.

    17. [17]

      [17] H. W. Gu, Z. M. Yang, J. H. Gao, C. K. Chang, B. Xu, J. Am. Chem. Soc., 2005, 127, 34-35.

    18. [18]

      [18] J. S. Choi, Y. W. Jun, S. I. Yeon, H. C. Kim, J. S. Shin, J. Cheon, J. Am. Chem. Soc., 2006, 128, 15982-15983.

    19. [19]

      [19] Z. Ma, S. Dai, Nano Res., 2011, 4, 3-32.

    20. [20]

      [20] A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science, 2008, 321, 1331-1335.

    21. [21]

      [21] A. Stephen K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed., 2006, 45, 7896-7936.

    22. [22]

      [22] L. M. Molina, B. Hammer, Phys. Rev. Lett., 2003, 90, 206102/1-206102/4.

    23. [23]

      [23] Z. P. Liu, X. Q. Gong, J. Kohanoff, C. Sanchez, P. Hu, Phys. Rev. Lett., 2003, 91, 266102/1-266102/4.

    24. [24]

      [24] S. Laursen, S. Linic, Phys. Rev. Lett., 2006, 97, 026101/1-026101/4.

    25. [25]

      [25] C. Wang, H. F. Yin, S. Dai, S. H. Sun, Chem. Mater., 2010, 22, 3277-3282.

    26. [26]

      [26] L. Zhang, Y. H. Dou, H. C. Gu, J. Colloid Interface Sci., 2006, 297, 660-664.

    27. [27]

      [27] H. F. Yin, C. Wang, H. G. Zhu, S. H. Overbury, S. H. Sun, S. Dai, Chem. Commun., 2008, 4357-4359.

    28. [28]

      [28] Y. Lee, M. A. Garcia, N. A. Frey Huls, S. H. Sun, Angew. Chem. Int. Ed., 2010, 49, 1271-1274.

    29. [29]

      [29] X. Q. Huang, Y. J. Li, H. L. Zhou, X. Zhong, X. F. Duan, Y. Huang, Chem.-Eur. J., 2012, 18, 9505-9510.

    30. [30]

      [30] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Nature, 2009, 458, 746-749.

    31. [31]

      [31] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. A. Attard, G. J. Hutchings, Top. Catal., 2004, 27, 131-136.

    32. [32]

      [32] R. Zanella, C. Louis, S. Giorgio, R. Touroude, J. Catal., 2004, 223, 328-339.

    33. [33]

      [33] C. Milone, R. Ingoglia, S. Galvagno, Gold Bull., 2006, 39, 54-65.

    34. [34]

      [34] A. Abad, A. Corma, H. García, Pure Appl. Chem., 2007, 79, 1847-1854.

    35. [35]

      [35] A. Corma, P. Concepción, P. Serna, Angew. Chem. Int. Ed., 2007, 46, 7266-7269.

    36. [36]

      [36] A. Corma, P. Serna, H. García, J. Am. Chem. Soc., 2007, 129, 6358-6359.

    37. [37]

      [37] H. Zeng, J. Li, J. P. Liu, Z. L. Wang, S. H. Sun, Nature, 2002, 420, 395-398.

    38. [38]

      [38] C. J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin, Nature, 1998, 396, 444-446.

    39. [39]

      [39] S. Peng, Y. Lee, C. Wang, H. F. Yin, S. Dai, S. H. Sun, Nano Res., 2008, 1, 229-234.

    40. [40]

      [40] V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc., 1950, 72, 4847-4854.

    41. [41]

      [41] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci., 2000, 30, 545-610.

    42. [42]

      [42] S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J. Am. Chem. Soc., 2004, 126, 273-279.

    43. [43]

      [43] S. H. Sun, H. Zeng, J. Am. Chem. Soc., 2002, 124, 8204-8205.

    44. [44]

      [44] Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell, Science, 2003, 299, 226-229.

    45. [45]

      [45] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Science, 2002, 298, 1006-1009.

    46. [46]

      [46] X. L. Sun, S. J. Guo, Y. Liu, S. H. Sun, Nano Lett., 2012, 12, 4859-4863.

    47. [47]

      [47] M. S. Jin, H. Zhang, J. G. Wang, X. L. Zhong, N. Lu, Z. Y. Li, Z. X. Xie, M. J. Kim, Y. N. Xia, ACS Nano, 2012, 6, 2566-2573.

    48. [48]

      [48] F. R. Fan, D. Y. Liu, Y. F. Wu, S. Duan, Z. X. Xie, Z. Y. Jiang, Z. Q. Tian, J. Am. Chem. Soc., 2008, 130, 6949-6951.

    49. [49]

      [49] Y. H. Chen, H. H. Hung, M. H. Huang, J. Am. Chem. Soc., 2009, 131, 9114-9121.

    50. [50]

      [50] J. Jung, D. Seo, G. Park, S. Ryu, H. Song, J. Phys. Chem. C, 2010, 114, 12529-12534.

    51. [51]

      [51] D. Seo, J. H. Park, J. Jung, S. M. Park, S. Ryu, J. Kwak, H. Song, J. Phys. Chem. C, 2009, 113, 3449-3454.

    52. [52]

      [52] N. R. Sieb, N. Wu, E. Majidi, R. Kukreja, N. R. Branda, B. D. Gates, ACS Nano, 2009, 3, 1365-1372.

    53. [53]

      [53] W. W. He, X. C. Wu, J. B. Liu, K. Zhang, W. G. Chu, L. L. Feng, X. N. Hu, W. Zhou, S. S. Xie, J. Phys. Chem. C, 2009, 113, 10505-10510.

    54. [54]

      [54] F. Wetz, K. Soulantica, A. Falqui, M. Respaud, E. Snoeck, B. Chaudret, Angew. Chem. Int. Ed., 2007, 46, 7079-7081.

    55. [55]

      [55] L. Carbone, P. D. Cozzoli, Nano Today, 2010, 5, 449-493.

    56. [56]

      [56] J. T. Zhang, Y. Tang, K. Lee, M. Ouyang, Science, 2010, 327, 1634-1638.

    57. [57]

      [57] N. E. Motl, J. F. Bondi, R. E. Schaak, Chem. Mater., 2012, 24, 1552-1554.

    58. [58]

      [58] Y. Yang, W. F. Wang, X. L. Li, W. Chen, N. N. Fan, C. Zou, X. Chen, X. J. Xu, L. J. Zhang, S. M. Huang, Chem. Mater., 2013, 25, 34-41.

    59. [59]

      [59] S. R. Brankovic, J. X. Wang, R. R. Adžić, Surf. Sci., 2001, 474, L173-L179.

    60. [60]

      [60] H. Jing, H. Wang, CrystEngComm, 2014, 16, 9469-9477.

    61. [61]

      [61] B. Nikoobakht, M. A. El-Sayed, Chem. Mater., 2003, 15, 1957-1962.

    62. [62]

      [62] T. Ming, W. Feng, Q. Tang, F. Wang, L. D. Sun, J. F. Wang, C. H. Yan, J. Am. Chem. Soc., 2009, 131, 16350-16351.

    63. [63]

      [63] J. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Y. Li, C. A. Mirkin, J. Am. Chem. Soc., 2010, 132, 14012-14014.

    64. [64]

      [64] L. Carbone, S. Kudera, C. Giannini, G. Ciccarella, R. Cingolani, P. D. Cozzoli, L. Manna, J. Mater. Chem., 2006, 16, 3952-3956.

    65. [65]

      [65] R. Sato, M. Kanehara, T. Teranishi, Small, 2011, 7, 469-473.

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    6. [6]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    7. [7]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    8. [8]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    9. [9]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    19. [19]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(0)
  • Abstract views(558)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return