Citation:
Zhongkui Zhao, Guifang Ge, Weizuo Li, Xinwen Guo, Guiru Wang. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: A review[J]. Chinese Journal of Catalysis,
;2016, 37(5): 644-670.
doi:
10.1016/S1872-2067(15)61065-8
-
The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure (morphology, shape, size, texture, and surface structure) and surface chemistry (elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom-up and top-down strategies and their use in the oxidative dehydrogenation (ODH) and direct dehydrogenation (DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure-performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly-efficient, energy-saving, and clean production of their corresponding olefins.
-
Keywords:
- Carbocatalysis,
- Microstructure,
- Surface chemistry,
- Modulation,
- Dehydrogenation,
- Olefin
-
-
-
[1]
[1] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev., 2014, 114, 10613-10653.
-
[2]
[2] C. A. Carrero, R. Schlögl, I. E. Wachs, R. Schomaecker, ACS Catal., 2014, 4, 3357-3380.
-
[3]
[3] F. Cavani, F. Trifiro, Appl. Catal. A, 1995, 133, 219-239.
-
[4]
[4] W. Qi, D. S. Su, ACS Catal., 2014, 4, 3212-3218.
-
[5]
[5] D. Chen, A. Holmen, Z. J. Sui, X. G. Zhou, Chin. J. Catal., 2014, 35, 824-841.
-
[6]
[6] L. M. Madeira, M. F. Portela, Catal. Rev.-Sci. Eng., 2002, 44, 247-286.
-
[7]
[7] M. S. Chen, M. C. White, Science, 2010, 327, 566-571.
-
[8]
[8] Y. H. Li, S. Das, S. L. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc., 2012, 134, 9727-9732.
-
[9]
[9] Q. S. Gao, C. Giordano, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 11740-11744.
-
[10]
[10] D. R. Dreyer, C. W. Bielawski, Chem. Sci., 2011, 2, 1233-1240.
-
[11]
[11] C. L. Su, K. P. Loh, Acc. Chem. Res., 2013, 46, 2275-2285.
-
[12]
[12] X. Y. Sun, R. Wang, D. S. Su, Chin. J. Catal., 2013, 34, 508-523.
-
[13]
[13] A. Schaetz, M. Zeltner, W. J. Stark, ACS Catal., 2012, 2, 1267-1284.
-
[14]
[14] M. A. Patel, F. X. Luo, M. R. Khoshi, E. Rabie, Q. Zhang, C. R. Flach, R. Mendelsohn, E Garfunkel, M. Szostak, H. He, ACS Nano, 2016, 10, 2305-2315.
-
[15]
[15] W. Qi, W. Liu, B. S. Zhang, X. M. Gu, X. L. Guo, D. S. Su, Angew. Chem. Int. Ed., 2013, 52, 14224-14228.
-
[16]
[16] Y. J. Gao, G. Hu, J. Zhong, Z. J. Shi, Y. S. Zhu, D. S. Su, J. G. Wang, X. H. Bao, D. Ma, Angew. Chem. Int. Ed., 2013, 52, 2109-2113.
-
[17]
[17] S. P. Pitre, C. D. McTiernan, H. Ismaili, J. C. Scaiano, J. Am. Chem. Soc., 2013, 135, 13286-13289.
-
[18]
[18] Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 68-89.
-
[19]
[19] J. Bedia, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero, AIChE J., 2010, 56, 1557-1568.
-
[20]
[20] P. J. Ji, H. S. Tan, X. Xu, W. Feng, AIChE J., 2010, 56, 3005-3011.
-
[21]
[21] K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, B. V. Lotsch, Angew. Chem. Int. Ed., 2013, 52, 2435-2439.
-
[22]
[22] M. Younessi-Sinaki, F. Hamdullahpur, AIChE J., 2014, 60, 2228-2234.
-
[23]
[23] M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc., 2013, 135, 7118-7121.
-
[24]
[24] Y. S. Jun, E. Z. Lee, X. C. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater., 2013, 23, 3661-3667.
-
[25]
[25] Y. Zheng, Y. Jiao, Y. L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed., 2013, 52, 3110-3116.
-
[26]
[26] Y. Zhao, L. J. Yang, S. Chen, X. Z. Wang, Y. W. Ma, Q. Wu, Y. F. Jiang, W. J. Qian, Z. Hu, J. Am. Chem. Soc., 2013, 135, 1201-1204.
-
[27]
[27] K. Ai, Y. L. Liu, C. P. Ruan, L. H. Lu, G. Q. Lu, Adv. Mater., 2013, 25, 998-1003.
-
[28]
[28] H. Wang, K. Sun, F. Tao, D. J. Stacchiola, Y. H. Hu, Angew. Chem. Int. Ed., 2013, 52, 9210-9214.
-
[29]
[29] I. V. Lightcap, P. V. Kamat, Acc. Chem. Res., 2013, 46, 2235-2243.
-
[30]
[30] R. Schlögl, Adv. Catal., 2013, 56, 103-185.
-
[31]
[31] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Chem. Rev., 2014, 114, 6179-6212.
-
[32]
[32] Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 68-89.
-
[33]
[33] L. R. Radovic, C. Mora-Vilches, A. J. A. Salgado-Casanova, Chin. J. Catal., 2014, 35, 792-797.
-
[34]
[34] C. C. Huang, C. Li, G. Q. Shi, Energy Environ. Sci., 2012, 5, 8848-8868.
-
[35]
[35] X. K. Kong, C. L. Chen, Q. W. Chen, Chem. Soc. Rev., 2014, 43, 2841-2857.
-
[36]
[36] D. W. Wang, D. S. Su, Energy Environ. Sci., 2014, 7, 576-591.
-
[37]
[37] C. Ampelli, S. Perathoner, G. Centi, Chin. J. Catal., 2014, 35, 783-791.
-
[38]
[38] X. Y. Sun, R. Wang, D. S. Su, Chin. J. Catal., 2013, 34, 508.
-
[39]
[39] D. S. Su, J. Zhang, B. Frank, A. Thomas, X. C. Wang, J. Paraknowitsch, R. Schlögl, ChemSusChem, 2010, 3, 169-180.
-
[40]
[40] J. J. Vilatela, D. Eder, ChemSusChem, 2012, 5, 456-478.
-
[41]
[41] J. Zhu, A. Holmen, D. Chen, ChemCatChem, 2013, 5, 378-401.
-
[42]
[42] D. S. Su, S. Perathoner, G. Centi, Chem. Rev., 2013, 113, 5782-5816.
-
[43]
[43] A. Guerrero-Ruiz, I. Rodriguez-Ramos, Carbon, 1994, 32, 23-29.
-
[44]
[44] M. F. R. Pereira, J. M. Orfao, J. L. Figueiredo, Appl. Catal. A, 1999, 184, 153-160.
-
[45]
[45] H. Ba, S. Podila, Y. Liu, X. Mu, J.-M. Nhut, V. Papaefthimiou, S. Zafeiratos, P. Granger, C. Pham-Huu, Catal. Today, 2015, 249, 167-175.
-
[46]
[46] J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl and D. S. Su, Science, 2008, 322, 73-77.
-
[47]
[47] J. Zhang, D. S. Su, R. Blume, R. Schlögl, R. Wang, X. Yang, A. Gajović, Angew. Chem. Int. Ed., 2010, 49, 8640-8644.
-
[48]
[48] S. J. Guo, S. D. Zhang, S. Sun, Angew. Chem. Int. Ed., 2013, 52, 8526-8544.
-
[49]
[49] I. Lee, F. Delbecq, R. Morales, M. A. Albiter, F. Zaera, Nat. Mater., 2009, 8, 132-138.
-
[50]
[50] R. Krishna, Chem. Soc. Rev., 2012, 41, 3099-3118.
-
[51]
[51] F. Tao, Chem. Soc. Rev., 2012, 41, 7977-7979.
-
[52]
[52] Y. Li, W. Shen, Chem. Soc. Rev., 2014, 43, 1543-1574.
-
[53]
[53] W. X. Huang, Y. X. Gao, Catal. Sci. Technol., 2014, 4, 3772-3784.
-
[54]
[54] D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. T. Atanasoski, N. M. Markovic, V. R. Stamenkovic, Nat. Mater., 2012, 11, 1051-1058.
-
[55]
[55] J. L. Gong, Chem. Rev., 2011, 112, 2987-3054.
-
[56]
[56] C. C. Lin, Y. Guo, J. Vela, ACS Catal., 2015, 5, 1037-1044.
-
[57]
[57] J. G. Yu, J. X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc., 2014, 136, 8839-8842.
-
[58]
[58] Y. Zhao, C. Eley, J. P. Hu, J. S. Foord, L. Ye, H. W. He, S. C. E. Tsang, Angew. Chem. Int. Ed., 2012, 51, 3846-3849.
-
[59]
[59] C. L. Chen, J. Zhang, B. S. Zhang, C. L. Yu, F. Peng, D. S. Su, Chem. Commun., 2013, 49, 8151-8153.
-
[60]
[60] X. D. Hu, Y. T. Wu, H. R. Li, Z. B. Zhang, J. Phys. Chem. C, 2010, 114, 9603-9607.
-
[61]
[61] S. Mao, B. Li, D. S. Su, J. Mater. Chem. A, 2014, 2, 5287-5294.
-
[62]
[62] H. Xie, Z. L. Wu, S. H. Overbury, C. D. Liang, V. Schwartz, J. Catal., 2009, 267, 158-166.
-
[63]
[63] R. Huang, H. Y. Liu, B. S. Zhang, X. Y. Sun, C. H. Liang, D. S. Su, B. N. Zong, J. F. Rong, ChemSusChem, 2014, 7, 3476-3482.
-
[64]
[64] G. K. P. Dathar, Y. T. Tsai, K. Gierszal, Y. Xu, C. D. Liang, A. J. Rondinone, S. H. Overbury, V. Schwartz, ChemSusChem, 2014, 7, 483-491.
-
[65]
[65] R. C. Rao, M. Yang, Q. Ling, C. S. Li, Q. Y. Zhang, H. X. Yang, A. M. Zhang, Catal. Sci. Technol., 2014, 4, 665-671.
-
[66]
[66] I. Pelech, O. S. G. P. Soares, M. F. R. Pereira, J. L. Figueiredo, Catal Today, 2015, 249, 176-183.
-
[67]
[67] G. Mestl, N. I. Maksimova, N. Keller, V. V. Roddatis, R. Schlögl, Angew. Chem. Int. Ed., 2001, 40, 2066-2068.
-
[68]
[68] T. J. Zhao, W. Z. Sun, X. Y. Gu, M. Rønning, D. Chen, Y. C. Dai, W. K. Yuan, A. Holmen, Appl. Catal. A, 2007, 323, 135-146.
-
[69]
[69] P. Niebrzydowska, R. Janus, P. Kuśtrowski, S. Jarczewski, A. Wach, A. M. Silvestre-Albero, F. Rodríguez-Reinoso, Carbon, 2013, 64, 252-261.
-
[70]
[70] J. J. Delgado, X.-W. Chen, B. Frank, D. S. Su, R. Schlögl, Catal today, 2012, 186, 93-98.
-
[71]
[71] B. Frank, J. Zhang, R. Blume, R. Schlögl, D. S. Su, Angew. Chem. Int. Ed., 2009, 48, 6913-6917.
-
[72]
[72] J. Zhang, D. Su, A. Zhang, D. Wang, R. Schlögl, C. Hébert, Angew. Chem. Int. Ed., 2007, 119, 7319-7323.
-
[73]
[73] W. Qi, W. Liu, B. S. Zhang, X. M. Gu, X. L. Guo, D. S. Su, Angew. Chem. Int. Ed., 2013, 52, 14224-14228.
-
[74]
[74] S. B. Tang, Z. X. Cao, Phys. Chem. Chem. Phys., 2012, 14, 16558-16565.
-
[75]
[75] X. Y. Sun, B. Li, D. S. Su, Chem. Commun., 2014, 50, 11016-11019.
-
[76]
[76] X. Y. Sun, R. Wang, B. S. Zhang, R. Huang, X. Huang, D. S. Su, T. Chen, C. X. Miao, W. M. Yang, ChemCatChem, 2014, 6, 2270-2275.
-
[77]
[77] X. Y. Sun, Y. X. Ding, B. S. Zhang, R. Huang, D. Chen, D. S. Su, ACS Catal., 2015, 5, 2436-2444.
-
[78]
[78] X. Y. Sun, Y. X. Ding, B. S. Zhang, R. Huang, D. S. Su, Chem. Commun., 2015, 51, 9145-9148.
-
[79]
[79] B. Frank, S. Wrabetz, O. V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, ChemPhysChem, 2011, 12, 2709-2713.
-
[80]
[80] A. M. Zheng, Y. Y. Chu, S. H. Li, D. S. Su, F. Deng, Carbon, 2014, 77, 122-129.
-
[81]
[81] L. Liu, Q. F. Deng, B. Agula, X. Zhao, T. Z. Ren, Z. Y. Yuan, Chem. Commun., 2011, 47, 8334-8336.
-
[82]
[82] R. Wang, X. Y. Sun, B. S. Zhang, X. Y. Sun, D. S. Su, Chem. Eur. J., 2014, 20, 6324-6331.
-
[83]
[83] Z. K. Zhao, Y. T. Dai, G. F. Ge, G. R. Wang, Chem. Eur. J, 2015, 21, 8004-8009.
-
[84]
[84] Z. K. Zhao, Y. T. Dai, G. F. Ge, G. R. Wang, AIChE J., 2015, 61, 2543-2561.
-
[85]
[85] Z. Zhao, Y. T. Dai, G. F. Ge, Catal. Sci. Technol., 2015, 5, 1548-1557.
-
[86]
[86] T. T. Thanh, H. Ba, L. Truong-Phuoc, J.-M. Nhut, O. Ersen, D. Begin, I. Janowska, D. L. Nguyen, P. Granger, C. Pham-Huu, J. Mater. Chem. A, 2014, 2, 11349-11357.
-
[87]
[87] Z. K. Zhao, Y. T. Dai, J. Mater. Chem. A, 2014, 2, 13442-13451.
-
[88]
[88] Z. K. Zhao, Y. T. Dai, G. F. Ge, G. R. Wang, ChemCatChem, 2015, 7, 1135-1144.
-
[89]
[89] Z. K. Zhao, Y. T. Dai, J. H. Lin, G. R. Wang, Chem. Mater., 2014, 26, 3151-3161.
-
[90]
[90] L. Liu, Q. F. Deng, B. Agula, T. Z. Ren, Y.-P. Liu, B. Zhaorigetu, Z. Y. Yuan, Catal Today, 2012, 186, 35-41.
-
[91]
[91] L. Liu, Q. F. Deng, Y. P. Liu, T. Z. Ren, Z. Y. Yuan, Catal. Commun., 2011, 16, 81-85.
-
[92]
[92] X. Liu, D. S. Su, R. Schlögl, Carbon, 2008, 46, 547-549.
-
[93]
[93] X. Liu, B. Frank, W. Zhang, T. P. Cotter, R. Schlögl, D. S. Su, Angew. Chem. Int. Ed., 2011, 50, 3318-3322.
-
[94]
[94] D. Y. Jung, H. G. Jang, G. R. Kim, G. J. Kim, Res. Chem. Intermed., 2011, 37, 1145-1156.
-
[95]
[95] N. Keller, N. I. Maksimova, V. V. Roddatis, M. Schur, G. Mestl, Y. V. Butenko, V. L. Kuznetsov, R. Schlögl, Angew. Chem. Int. Ed., 2002, 41, 1885-1888.
-
[96]
[96] D. S. Su, N. Maksimova, J. J. Delgado, N. Keller, G. Mestl, M. J. Ledoux, R. Schlögl, Catal. Today, 2005, 102, 110-114.
-
[97]
[97] D. S. Su, J. J. Delgado, X. Liu, D. Wang, R. Schlögl, L. F. Wang, Z. Zhang, Z. Shan, F. S. Xiao, Chem. Asian J., 2009, 4, 1108-1113.
-
[98]
[98] V. Zarubina, H. Talebi, C. Nederlof, F. Kapteijn, M. Makkee, I. Melián-Cabrera, Carbon, 2014, 77, 329-340.
-
[99]
[99] M. F. R. Pereira, J. L. Figueiredo, J. J. Órfão, P. Serp, P. Kalck, Y. Kihn, Carbon, 2004, 42, 2807-2813.
-
[100]
[100] J. W. Diao, H. W. Liu, J. Wang, Z. B. Feng, T. Chen, C. X. Miao, W. M. Yang, D. S. Su, Chem. Commun., 2015, 51, 3423-3425.
-
[101]
[101] Z. J. Sui, T. J. Zhao, J. H. Zhou, P. Li, Y. C. Dai, Chin. J. Catal., 2005, 26, 521-526.
-
[102]
[102] M. F. R. Pereira, J. J. M. Órfão, J. L. Figueiredo, Carbon, 2002, 40, 2393-2401.
-
[103]
[103] I. Gniot, P. Kirszensztejn, M. Kozłowski, Appl. Catal. A, 2009, 362, 67-74.
-
[104]
[104] M. F. R. Pereira, J. J. M. Órfão, J. L.Figueiredo, Colloids Surf. A, 2004, 241, 165-171.
-
[105]
[105] A. Malaika, P. Rechnia, B. Krzyżyńska, M. Kozłowski, Microporous Mesoporous Mater., 2012, 163, 300-306.
-
[106]
[106] C. D. Liang, H. Xie, V. Schwartz, J. Howe, S. Dai, S. H. Overbury, J. Am. Chem. Soc., 2009, 131, 7735-7741.
-
[107]
[107] L. F. Wang, J. J. Delgado, B. Frank, Z. Zhang, Z. C. Shan, D. S. Su, F. S. Xiao, ChemSusChem, 2012, 5, 687-693.
-
[108]
[108] N. Xiao, Y. Zhou, Z. Ling, Z. B. Zhao, J. S. Qiu, Carbon, 2013, 60, 514-522.
-
[109]
[109] L. F. Wang, J. Zhang, D. S. Su, Y. Y. Ji, X. J. Cao, F. S. Xiao, Chem. Mater., 2007, 19, 2894-2897.
-
[110]
[110] J. J. Delgado, X. W. Chen, D. S. Su, S. B. A. Hamid, R. Schlögl, J. Nanosci. Nanotechnol., 2007, 7, 3495-3501.
-
[111]
[111] H. Yuan, Z. H. Sun, H. Y. Liu, B. S. Zhang, C. L. Chen, H. H. Wang, Z. M. Yang, J. S. Zhang, F. Wei, D. S. Su, ChemCatChem, 2013, 5, 1713-1717.
-
[112]
[112] J. J. Delgado, D. S. Su, G. Rebmann, N. Keller, A. Gajovic, R. Schlögl, J. Catal., 2006, 244, 126-129.
-
[113]
[113] J. Zhang, R. Wang, E. Z. Liu, X. F. Gao, Z. H. Sun, F. S. Xiao, F. Girgsdies, D. S. Su, Angew. Chem. Int. Ed., 2012, 51, 7581-7585.
-
[114]
[114] P. Li, T. Li, J. H. Zhou, Z. J. Sui, Y. C. Dai, W. K. Yuan, D. Chen, Microporous Mesoporous Mater., 2006, 95, 1-7.
-
[115]
[115] J. Wang, H. Y. Liu, J. Y. Diao, X. M. Gu, H. H. Wang, J. F. Rong, B. N. Zong, D. S. Su, J. Mater. Chem. A, 2015, 3, 2305-2313.
-
[116]
[116] Y. Ito, H. J. Qiu, T. Fujita, Y. Tanabe, K. Tanigaki, M. W. Chen, Adv. Mater., 2014, 26, 4145-4150.
-
[117]
[117] K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science, 2009, 323, 760-764.
-
[118]
[118] X. H. Li, M. Antonietti, Chem. Soc. Rev., 2013, 42, 6593-6604.
-
[119]
[119] H. B. Wang, T. Maiyalagan, X. Wang, ACS Catal., 2012, 2, 781-794.
-
[120]
[120] S. Zhang, P. Kang, S. Ubnoske, M. K. Brennaman, N. Song, R. L. House, J. T. Glass, T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 7845-7848.
-
[121]
[121] M. Park, J. Ryu, Y. Kim, J. Cho, Energy Environ. Sci., 2014, 7, 3727-3735.
-
[122]
[122] L. F. Velasco, J. C. Lima, C. Ania, Angew. Chem. Int. Ed., 2014, 53, 4146-4148.
-
[123]
[123] K. N. Wood, R. O'Hayre, S. Pylypenko, Energy Environ. Sci., 2014, 7, 1212-1249.
-
[124]
[124] W. J. Lee, U. N. Maiti, J. M. Lee, J. Lim, T. H. Han, S. O. Kim, Chem. Commun., 2014, 50, 6818-6830.
-
[125]
[125] Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano, 2011, 5, 4350-4358.
-
[126]
[126] J. T. Jin, X. G. Fu, Q. Liu, Y. R. Liu, Z. Y. Wei, K. X. Niu, J. Y. Zhang, ACS Nano, 2013, 7, 4764-4773.
-
[127]
[127] Z. Y. Lin, G. Waller, Y. Liu, M. L. Liu, C. P. Wong, Adv. Energy Mater., 2012, 2, 884-888.
-
[128]
[128] Z. K. Zhao, Y. T. Dai, G. F. Ge, X. W. Guo, G. R. Wang, Phys. Chem. Chem. Phys., 2015, 17, 18895-18899.
-
[129]
[129] Z. K. Zhao, Y. T. Dai, G. F. Ge, X. W. Guo, G. R. Wang, RSC Adv., 2015, 5, 53095-53099.
-
[130]
[130] Z. K. Zhao, Y. T. Dai, G. F. Ge, X. W. Guo, G. R. Wang, Green Chem., 2015, 17, 3723-3727.
-
[131]
[131] Z. K. Zhao, Y. T. Dai, G. F. Ge, Q. Mao, Z. M. Rong, G. R. Wang, ChemCatChem, 2015, 7, 1070-1077.
-
[132]
[132] C. Duong-Viet, H. Ba, Y. F. Liu, L. Truong-Phuoc, J. M. Nhut, C. Pham-Huu, Chin. J. Catal., 2014, 35, 906-913.
-
[133]
[133] H. Ba, Y. F. Liu, X. K. Mu, W. H. Doh, J. M. Nhut, P. Granger, C. Pham-Huu, Appl. Catal. A, 2015, 499, 217-226.
-
[134]
[134] H. Y. Liu, J. Y. Diao, Q. Wang, S. Y. Gu, T. Chen, C. X. Miao, W. M. Yang, D. S. Su, Chem. Commun., 2014, 50, 7810-7812.
-
[135]
[135] X. Y. Sun, R. Wang, B. S. Zhang, R. Huang, X. Huang, D. S. Su, T. Chen, C. X. Miao, W. M. Yang, ChemCatChem, 2014, 6, 2270-2275.
-
[136]
[136] J. J. Delgado, X. Chen, J. P. Tessonnier, M. E. Schuster, E. Del Rio, R. Schlögl, D. S. Su, Catal. Today, 2010, 150, 49-54.
-
[137]
[137] R. Huang, C. H. Liang, D. S. Su, B. Zong, J. F. Rong, Catal. Today, 2015, 249, 161-166.
-
[138]
[138] A. Rinaldi, J. Zhang, B. Frank, D. S. Su, S. B. Abd Hamid, R. Schlögl, ChemSusChem, 2010, 3, 254-260.
-
[139]
[139] M. F. R. Pereira, J. J. M. Orfao, J. L. Figueiredo, Appl. Catal. A, 1999, 184, 153-160.
-
[140]
[140] J. d. J. D. Velásquez, L. M. C. Suárez, J. L. Figueiredo, Appl. Catal. A, 2006, 311, 51-57.
-
[141]
[141] N. V. Qui, P. Scholz, T. F. Krech, T. Keller, K. Pollok, B. Ondruschka, Catal. Commun., 2011, 12, 464-469.
-
[142]
[142] D. S. Su, N. I. Maksimova, G. Mestl, V. L. Kuznetsov, V. Keller, R. Schlögl, N. Keller, Carbon, 2007, 45, 2145-2151.
-
[143]
[143] P. Janus, R. Janus, P. Kuśtrowski, S. Jarczewski, A. Wach, A. M. Silvestre-Albero, F. Rodríguez-Reinoso, Catal. Today, 2014, 235, 201-209.
-
[144]
[144] Z. J. Sui, J. H. Zhou, Y. C. Dai, W. K. Yuan, Catal. Today, 2005, 106, 90-94.
-
[145]
[145] Y. Marco, L. Roldán, E. Muñoz, E. García-Bordejé, ChemSusChem, 2014, 7, 2496-2504.
-
[146]
[146] V. Schwartz, H. Xie, H. M. Meyer, S. H. Overbury, C. D. Liang, Carbon, 2011, 49, 659-668.
-
[147]
[147] J. Y. Diao, H. Y. Liu, Z. B. Feng, Y. J.Zhang, T. Chen, C. X. Miao, W. M. Yang, D. S. Su, Catal. Sci. Technol., 2015, 5, 4950-4953.
-
[148]
[148] Z. K. Zhao, W. Z. Li, Y. T. Dai, G. F. Ge, X. W. Guo, G. R. Wang, ACS Sust. Chem. Eng., 2015, 3, 3355-3364.
-
[149]
[149] H. Ba, L. Truong-Phuoc, Y. F. Liu, C. Duong-Viet, J. M. Nhut, L. Nguyen-Dinh, P. Granger, C. Pham-Huu, Carbon, 2016, 96, 1060-1069.
-
[1]
-
-
-
[1]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[2]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[3]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[4]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[5]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[6]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[7]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[8]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[9]
Xunzhang Fan , Yuanjin Zhao , Shufang Luo , Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065
-
[10]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[11]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[12]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[13]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[14]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[15]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[16]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[17]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[18]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[19]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[20]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(629)
- HTML views(73)