Citation: Eda Sinirtas, Meltem Isleyen, Gulin Selda Pozan Soylu. Photocatalytic degradation of 2,4-dichlorophenol with V2O5-TiO2 catalysts: Effect of catalyst support and surfactant additives[J]. Chinese Journal of Catalysis, ;2016, 37(4): 607-615. doi: 10.1016/S1872-2067(15)61035-X shu

Photocatalytic degradation of 2,4-dichlorophenol with V2O5-TiO2 catalysts: Effect of catalyst support and surfactant additives

  • Corresponding author: Gulin Selda Pozan Soylu, 
  • Received Date: 6 October 2015
    Available Online: 22 December 2015

    Fund Project: 土耳其科学技术研究委员会(111M210 [2011-2013]). (111M210 [2011-2013])

  • Binary oxide catalysts with various weight percentage V2O5 loadings were prepared by solid-state dispersion and the nanocomposites were modified with surfactants. The catalysts were analyzed using X-ray diffraction, diffuse-reflectance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and N2 adsorption-desorption. The photocatalytic activities of the catalysts were evaluated in the degradation of 2,4-dichlorophenol under ultraviolet irradiation. The photocatalytic activity of 50 wt% V2O5-TiO2 (50V2O5-TiO2) was higher than those of pure V2O5, TiO2, and P25. Interactions between V2O5 and TiO2 affected the photocatalytic efficiencies of the binary oxide catalysts. Cetyltrimethylammonium bromide (CTAB) and hexadecyltrimethylammonium bromide (HTAB) significantly enhanced the efficiency of the 50V2O5-TiO2 catalyst. The highest percentage of 2,4-dichlorophenol degradation (100%) and highest reaction rate (2.22 mg/(L·min)) were obtained in 30 min with the (50V2O5-TiO2)-CTAB catalyst. It is concluded that the addition of a surfactant to the binary oxide significantly enhanced the photocatalytic activity by modifying the optical and electronic properties of V2O5 and TiO2.
  • 加载中
    1. [1]

      [1] J. Zhang, D. Q. Liu, W. J. Bian, X. H. Chen, Desalination, 2012, 304, 49-56.

    2. [2]

      [2] L. Ren, J. Zhang, Y. Li, C. L. Zhang, Chem. Eng. J., 2011, 168, 553-561.

    3. [3]

      [3] B. H. Hameed, I. A. W. Tan, A. L. Ahmad, Chem. Eng. J., 2008, 144, 235-244.

    4. [4]

      [4] S. G. Chung, Y. S. Chang, J. W. Choi, K. Y. Baek, S. W. Hong, S. T. Yun, S. H. Lee, Chem. Eng. J., 2013, 215, 921-928.

    5. [5]

      [5] Z. Zhang, Q. H. Shen, N. Cissoko, J. Wo, X. Xu, J. Hazard. Mater., 2010, 182, 252-258.

    6. [6]

      [6] T. Zhou, Y. Z. Li, T. T. Lim, Sep. Purif. Technol., 2010, 76, 206-214.

    7. [7]

      [7] A. O. Olaniran, E. O. Igbinosa, Chemosphere, 2011, 83, 1297-1306.

    8. [8]

      [8] L. Liu, F. Chen, F. Yang, Y. Chen, J. Crittenden, Chem. Eng. J., 2012, 181, 189-195.

    9. [9]

      [9] N. Zhang, M. Q. Yang, S. Q. Liu, Y. G. Sun, Y. J. Xu, Chem. Rev., 2015, 115, 10307-10377.

    10. [10]

      [10] T. K. Tseng, Y. S. Lin, Y. J. Chen, H. Chu, Int. J. Mol. Sci., 2010, 11, 2336-2361.

    11. [11]

      [11] F. Ribonia, L. G. Bettini, D. W. Bahnemann, E. Selli, Catal. Today, 2013, 209, 28-34.

    12. [12]

      [12] X. F. Lei, X. X. Xue, Mater. Sci. Semicond. Process., 2008, 11, 117-121.

    13. [13]

      [13] H. Liu, T. Xia, H. K. Shon, S. Vigneswaran, J. Ind. Eng. Chem., 2011, 17, 461-467.

    14. [14]

      [14] L. Li, C. Y. Liu, Y. Liu, Mater. Chem. Phys., 2009, 113, 551-557.

    15. [15]

      [15] S. Q. Liu, Z. R. Tang, Y. G. Sun, J. C. Colmenares, Y. J. Xu, Chem. Soc. Rev., 2015, 44, 5053-5075.

    16. [16]

      [16] K. Esumi, S. Nakagawa, T. Yoshımu, J. Jpn Soc. Colour Mater., 2004, 77, 13-18.

    17. [17]

      [17] Y. Cho, H. Kyung, W. Choi, Appl. Catal. B, 2004, 52, 23-32.

    18. [18]

      [18] E. O. Scott-Emuakpor, A. Kruth, M. J. Todd, A. Raab, G. I. Paton, D. E. Macphee, Appl. Catal. B, 2012, 123, 433-439.

    19. [19]

      [19] H. Wang, J. P. Lewis, J. Phys: Condens. Matter, 2005, 17, L209-L213.

    20. [20]

      [20] C. D. Valentin, G. Pacchioni, A. Selloni, Chem. Mater., 2005, 17, 6656-6665.

    21. [21]

      [21] L. Li, C. Y. Liu, Y. Liu, Mater. Chem. Phys., 2009, 113, 551-557.

    22. [22]

      [22] D. E. Gu, B. C. Yang, Y. D. Hu, Catal. Lett., 2007, 118, 254-259.

    23. [23]

      [23] S. M. Chang, W. S. Liu, Appl. Catal. B, 2011, 101, 333-342.

    24. [24]

      [24] J. E. Herrera, T. T. Isimjan, I. Abdullahi, A. Ray, S. Rohani, Appl. Catal. A, 2012, 417, 13-18.

    25. [25]

      [25] L. E. Briand, O. P. Tkachenko, M. Guraya, X. Gao, I. E. Wachs, W. Grunert, J. Phys. Chem. B, 2004, 108, 4823-4830.

    26. [26]

      [26] T. M. D. Dang, T. M. H. Nguyen, H. P. Nguyen, Adv. Nat. Sci., 2010, 1, 1-10.

    27. [27]

      [27] K. R. Gota, S. Suresh, Asian J. Chem., 2014, 26, 7087-7101.

    28. [28]

      [28] C. A. H. Aguilar, T. Pandiyan, J. A. Arenas-Alatorre, N. Singh, Sep. Purif. Technol., 2015, 149, 265-278.

    29. [29]

      [29] A. Kambur, G. S. Pozan, I. Boz, Appl. Catal. B, 2012, 115, 149-158.

    30. [30]

      [30] J. G. Yu, B. Wang, Appl. Catal. B, 2010, 94, 295-302.

    31. [31]

      [31] A. P. Zhang, J. Z. Zhang, Spectrochim. Acta Part A, 2009, 73, 336-341.

    32. [32]

      [32] V. D. Nithya, R. K. Selvan, C. Sanjeeviraja, D. M. Radheep, S. Arumugam S, Mater. Res. Bull., 2011, 46, 1654-1658.

    33. [33]

      [33] F. Bai, D. S. Wang, Z. Y. Huo, W. Chen, L. P. Liu, X. Liang, C. Chen, X. Wang, Q. Peng, Y. D. Li, Angew. Chem. Int. Ed., 2007, 46, 6650-6653.

    34. [34]

      [34] N. Molahasani, M. S. Sadjadi, K. Zare, Int. J. Nano Dimens., 2013, 4, 161-166.

    35. [35]

      [35] M. Shang, W. Z. Wang, L. Zhou, S. M. Sun, W. Z. Yin, J. Hazard. Mater., 2009, 172, 338-344.

    36. [36]

      [36] F. Lei, B. Yan, H. H. Chen, Q. Zhang, J. T. Zhao, Cryst. Growth Des., 2009, 9, 3730-3736.

    37. [37]

      [37] M. Kanna, S. Wongnawa, Mater. Chem. Phys., 2008, 110, 166-175.

    38. [38]

      [38] G. C. Chen, X. Q. Shan, Y. S. Wang, B. Wen, Z. G. Pei, Y. N. Xie, T. Liu, J. J. Pignatello, Water Res., 2009, 43, 2409-2418.

    39. [39]

      [39] P. Venkatesan, J. Santhanalakshmi, Nanosci. Nanotechnol., 2011, 1, 43-47.

    40. [40]

      [40] L. Q. Jing, H. G. Fu, B. Q. Wang, D. J. Wang, B. F. Xin, S. Li, J. Z. Sun, Appl. Catal. B, 2006, 62, 282-291.

    41. [41]

      [41] Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie, Nano Lett., 2007, 7, 1081-1085.

    42. [42]

      [42] C. Han, M. Q. Yang, N. Zhang, Y. J. Xu, J. Mater. Chem. A, 2014, 2, 19156-19166.

    43. [43]

      [43] C. Han, Z. Chen, N. Zhang, J. C. Colmenares, Y. J. Xu, Adv. Funct. Mater., 2015, 25, 221-229.

    44. [44]

      [44] H. Benhebal, M. Chai, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, M. Crine, B. Heinrichs, Alexandria Eng. J., 2013, 52, 517-523.

    45. [45]

      [45] J. B. Zhong, J. Z. Li, Z. H. Xiao, W. Hu, X. B. Zhou, X. W. Zheng, Mater. Lett., 2012, 91, 301-303.

    46. [46]

      [46] W. F. Yao, X. H. Xiao, H. Wang, J. T. Zhou, X. N. Yang, Y. Zhang, S. X. Shang, B. B. Huang, Appl. Catal. B, 2004, 52, 109-116.

    47. [47]

      [47] M. D. Hernandez-Alonso, I. Tejedor-Tejedor, J. M. Coronado, J. Soria, M. A. Anderson, Thin Solid Films, 2006, 502, 125-131.

    48. [48]

      [48] L. Kokporka, S. Onsuratoom, T. Puangpetch, S. Chavadej, Mater. Sci. Semicond. Process, 2013, 16, 667-678.

    49. [49]

      [49] B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Appl. Catal. A, 2007, 333, 264-271.

    50. [50]

      [50] J. C. Wu, C. S. Chung, C. L. Ay, I. K. Wang, J. Catal., 1984, 87, 98-107.

    51. [51]

      [51] Y. Xu, C. H. Langford, J. Phys. Chem., 1995, 99, 11501-11507.

    52. [52]

      [52] Y. Xu, C. H. Langford, J. Phys. Chem., 1997, 101, 3115-3121.

    53. [53]

      [53] DY. Xu, C. H. Langford, Langmuir, 2001, 17, 897-902.

    54. [54]

      [54] J. Yu, A. Kudo, Adv. Funct. Mater., 2006, 16, 2163-2169.

    55. [55]

      [55] D. L. Liao, B. Q. Liao, J. Photochem. Photobiol. A, 2007, 187, 363-369.

    56. [56]

      [56] J. S. Valente, F. Tzompantzi, J. Prince, J. G. H. Cortez, R. Gomez, Appl. Catal. B, 2009, 90, 330-338.

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(0)
  • Abstract views(296)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return