Citation:
Sunfeng Li, Xing Wang, Qinqin He, Qi Chen, Yanli Xu, Hanbiao Yang, Mengmeng Lü, Fengyu Wei, Xueting Liu. Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes[J]. Chinese Journal of Catalysis,
;2016, 37(3): 367-377.
doi:
10.1016/S1872-2067(15)61033-6
-
N-K2Ti4O9/UiO-66-NH2 composites synthesized by a facile solvothermal method have a core-shell structure with UiO-66-NH2 forming the shell around a N-K2Ti4O9 core. Their photocatalytic activities in the degradation of dyes under visible light irradiation were investigated. The N-K2Ti4O9/UiO-66-NH2 composites exhibited higher photocatalytic activity than the pure components. This synergistic effect was due to the high adsorption capacity of UiO-66-NH2 and that the two components together induced an enhanced separation efficiency of photogenerated electron-hole pairs. The mass ratio of N-K2Ti4O9 to ZrCl4 of 3:7 in the composite exhibited the highest photocatalytic activity. Due to the electrostatic attraction between the negatively charged backbone of UiO-66-NH2 with the positively charged groups of cationic dyes, the composites were more photocatalytically active for cationic dyes than for anionic dyes.
-
-
-
[1]
[1] A. S. Bhatt, P. L. Sakaria, M. Vasudevan, R. R. Pawar, N. Sudheesh, H. C. Bajaj, H. M. Mody, RSC Adv., 2012, 2, 8663-8671.
-
[2]
[2] H. Chen, J. Zhao, Adsorption, 2009, 15, 381-389.
-
[3]
[3] V. K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, J. Hazard. Mater., 2011, 186, 891-901.
-
[4]
[4] A. Dolbecq, P. Mialane, B. Keita, L. Nadjo, J. Mater. Chem., 2012, 22, 24509-24521.
-
[5]
[5] A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev., 2012, 112, 1555-1614.
-
[6]
[6] W. Q. Fan, Q. H. Zhang, Y. Wang, Phys. Chem. Chem. Phys., 2013, 15, 2632-2649.
-
[7]
[7] Y. Hosogi, H. Kato, A. Kudo, J. Phys. Chem. C, 2008, 112, 17678-17682.
-
[8]
[8] J. C. Cao, A. L. Wang, H. B. Yin, L. Q. Shen, M. Ren, S. Q. Han, Y. T. Shen, L. B. Yu, T. S. Jiang, Ind. Eng. Chem. Res., 2010, 49, 9128-9134.
-
[9]
[9] W. Q. Cui, S. S. Ma, L. Liu, J. S. Hu, Y. H. Liang, J. G. McEvoy, Appl. Surf. Sci., 2013, 271, 171-181.
-
[10]
[10] J. S. Wang, H. Li, H. Y. Li, S. Yin, T. Sato, Solid State Sci., 2009, 11, 988-993.
-
[11]
[11] P. Romero-Gómez, S. Hamad, J. C. González, A. Barranco, J. P. Espinós, J. Cotrino, A. R. González-Elipe, J. Phys. Chem. C, 2010, 114, 22546-22557.
-
[12]
[12] Y. J. Hwang, A. Boukai, P. D. Yang, Nano Lett., 2009, 9, 410-415.
-
[13]
[13] G. Q. Song, Z. Q. Wang, L. Wang, G. R. Li, M. J. Huang, F. X. Yin, Chin. J. Catal., 2014, 35, 185-195.
-
[14]
[14] G. Férey, Chem. Soc. Rev., 2008, 37, 191-214.
-
[15]
[15] H. L. Li, M. Eddaoudi, M. O'Keeffe, M. Yaghi, Nature, 1999, 402, 276-279.
-
[16]
[16] Y. S. Li, W. S. Yang, Chin. J. Catal., 2015, 36, 692-697.
-
[17]
[17] S. Kitagawa, R. Kitaura, S. I. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334-2375.
-
[18]
[18] S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S. Kitagawa, J. Am. Chem. Soc., 2007, 129, 2607-2614.
-
[19]
[19] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science, 2003, 300, 1127-1129.
-
[20]
[20] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. ÕKeeffe, O. M. Yaghi, Science, 2002, 295, 469-472.
-
[21]
[21] M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung, G. Férey, Angew. Chem. Int. Ed., 2006, 45, 8227-8231.
-
[22]
[22] P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed, 2006, 45, 5974-5978.
-
[23]
[23] C. G. Silva, I. Luz, F. X. Llabrés i Xamena, A. Corma, H. García, Chem.-Eur. J., 2010, 16, 11133-11138.
-
[24]
[24] L. J. Shen, W. M. Wu, R. W. Liang, R. Lin, L. Wu, Nanoscale, 2013, 19, 9374-9382.
-
[25]
[25] Q. H. Zhang, W. G. Fan, L. Gao, Appl. Catal. B, 2007, 76, 168-173.
-
[26]
[26] M. A. Aramendía, V. Borau, J. C. Colmenares, A. Marinas, J. M. Marinas, J. A. Navío, F. J. Urbano, Appl. Catal. B, 2008, 80, 88-97.
-
[27]
[27] M. H. Zhou, J. G. Yu, S. W. Liu, P. C. Zhai, L. Jiang, J. Hazard. Mater., 2008, 154, 1141-1148.
-
[28]
[28] M. R. Allen, A. Thibert, E. M. Sabio, N. D. Browning, D. S. Larsen, F. E. Osterloh, Chem. Mater., 2010, 22, 1220-1228.
-
[29]
[29] D. Mitoraj, H. Kisch, Angew. Chem. Int. Ed., 2008, 47, 9975-9978.
-
[30]
[30] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Hand Book of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN, 1979.
-
[31]
[31] R. L. Arechederra, K. Artyushkova, P. Atanassov, S. D. Minteer, ACS Appl. Mater. Interfaces, 2010, 2, 3295-3302.
-
[32]
[32] Y. Mosqueda, E. Pérez-Cappe, J. Arana, E. Longo, A. Ries, M. Cilense, P. A. P. Nascentec, P. Arandad, E. Ruiz-Hitzky, J. Solid State Chem., 2006, 179, 308-314.
-
[33]
[33] Q. Chen, Q. Q. He, M. M. Lv, Y. L. Xu, H. B. Yang, X. T. Liu, F. Y. Wei, Appl. Surf. Sci., 2015, 327, 77-85.
-
[34]
[34] V. K. Gupta, A. Mittal, L. Krishnan, V. Gajbe, Sep. Purif. Technol., 2004, 40, 87-96.
-
[35]
[35] X. G. Zhao, J. G. Huang, B. Wang, Q. Bi, L. L. Dong, X. J. Liu, Appl. Surf. Sci., 2014, 292, 576-582.
-
[36]
[36] Y. S. Ho, G. McKay, Process Biochem., 1999, 34, 451-465.
-
[37]
[37] D. Kavitha, C. Namasivayam, Bioresource Technol., 2007, 98, 14-21.
-
[38]
[38] P. Xiong, Q. Chen, M. Y. He, X. Q. Sun, X. Wang, J. Mater. Chem., 2012, 22, 17485-17493.
-
[39]
[39] P. Xiong, L. J. Wang, X. Q. Sun, B. H. Xu, X. Wang, Ind. Eng. Chem. Res., 2013, 52, 10105-10113.
-
[40]
[40] Q. Chen, Q. Q. He, M. M. Lv, X. T. Liu, J. Wang, J. P. Lv, Appl. Surf. Sci., 2014, 311, 230-238.
-
[41]
[41] X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science, 2011, 331, 746-750.
-
[42]
[42] A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker, New York, 1985.
-
[43]
[43] Z. G. Xiong, X. S. Zhao, J. Am. Chem. Soc., 2012, 134, 5754-5757.
-
[44]
[44] M. A. Butler, J. Appl. Phys., 1977, 48, 1914-1920.
-
[45]
[45] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, New York, 1980.
-
[46]
[46] T. X. Wu, G. M. Liu, J. C. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B, 1998, 102, 5845-5851.
-
[47]
[47] L. Mohapatra, K. Parida, M. Satpathy, J. Phys. Chem. C, 2012, 116, 13063-13070.
-
[48]
[48] B. Yuan, J. X. Wei, T. J. Hu, H. B. Yao, Z. H. Jiang, Z. W. Fang, Z. Y. Chu, Chin. J. Catal., 2015, 36, 1009-1016.
-
[1]
-
-
-
[1]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[2]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[3]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[4]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[5]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[6]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[7]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[8]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[9]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[10]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[11]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[12]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[13]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[14]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[15]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[16]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[17]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[18]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[19]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[20]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(344)
- HTML views(20)