Citation:
J. H. Flores, M. E. H. Maia da Costa, M. I. Pais da Silva. Effect of Cu-ZnO-Al2O3 supported on H-ferrierite on hydrocarbons formation from CO hydrogenation[J]. Chinese Journal of Catalysis,
;2016, 37(3): 378-388.
doi:
10.1016/S1872-2067(15)61032-4
-
Methanol synthesis catalysts based on Cu, Zn and Al were prepared by three methods and subsequently mixed with H-ferrierite zeolite in an aqueous suspension to disperse the catalysts over the support. These materials were characterized by X-ray diffraction, N2 adsorption, transmission electron microscopy, temperature programmed reduction, NH3 and H2 temperature-programmed desorption, and X-ray photoelectron spectroscopy. They were also applied to the CO hydrogenation reaction to produce dimethyl ether and hydrocarbons. The catalysts were prepared by coprecipitation under low and high supersaturation conditions and by a homogeneous precipitation method. The preparation technique was found to affect the precursor structural characteristics, such as purity and crystallinity, as well as the particle size distribution of the resulting catalyst. Low supersaturation conditions favored high dispersion of the Cu species, increasing the methanol synthesis catalyst's metallic surface area and resulting in a homogeneous particle size distribution. These effects in turn were found to modify the zeolite properties, promoting both a low micropore volume and blockage of the zeolite acid sites. The effect of the methanol synthesis catalyst on the reaction was verified by the correlation between the Cu surface area and the CO conversion rate.
-
-
-
[1]
[1] E. Iglesia, S. L. Soled, R. A. Fiato, J. Catal., 1992, 137, 212-224.
-
[2]
[2] M. E. Dry, Catal. Today, 2002, 71, 227-241.
-
[3]
[3] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, Fuel Process. Technol., 2004, 85, 1151-1164.
-
[4]
[4] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Fuel Process. Technol., 2004, 85, 1139-1150.
-
[5]
[5] Q. J. Ge, X. H. Li, H. Kaneko, Fujimoto K., J. Mol. Catal. A, 2007, 278, 215-219.
-
[6]
[6] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Catal. Lett., 2005, 102, 51-55.
-
[7]
[7] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Catal. Today, 2005, 104, 30-36.
-
[8]
[8] Q. J. Ge, Y. Lian, X. D. Yuan, X. H. Li, K. Fujimoto, Catal. Commun., 2008, 9, 256-261.
-
[9]
[9] S. H. Kang, J. W. Bae, K. W. Jun, H. S. Potdar, Catal. Commun., 2008, 9, 2035-2039.
-
[10]
[10] J. W. Bae, S. H. Kang, Y. J. Lee, K. W. Jun, Appl. Catal. B, 2009, 90, 426-435.
-
[11]
[11] J. L. Li, X. G. Zhang, T. Inui, Appl. Catal. A, 1996, 147, 23-33.
-
[12]
[12] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, J. Jpn. Petrol. Inst., 2004, 47, 394-402.
-
[13]
[13] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, J. Jpn. Petrol. Inst., 2005, 48, 45-52.
-
[14]
[14] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, J. Catal., 2004, 228, 43-55.
-
[15]
[15] C. Baltes, S. Vukojevic, F. Schüth, J. Catal., 2008, 258, 334-344.
-
[16]
[16] X. R. Zhang, L. C. Wang, C. Z. Yao, Y. G. Cao, W. L. Dai, H. Y. He, K. N. Fan, Catal. Lett., 2005, 102, 83-89.
-
[17]
[17] J. P. Shen, C. Song, Catal. Today, 2002, 77, 89-98.
-
[18]
[18] J. H. Flores, D. P. B. Peixoto, L. G. Appel, R. R. de Avillez, M. I. P. da Silva, Catal. Today, 2011, 172, 218-225.
-
[19]
[19] M. M. V. M. Souza, K. A. Ferreira, O. R. de Macedo Neto, N. F. P. Ribeiro, M. Schmal, Catal. Today, 2008, 133-135, 750-754.
-
[20]
[20] M. Behrens, D. Brennecke, F. Girgsdies, S. Kiβner, A. Trunschke, N. Nasrudin, S. Zakaria, N. F. Idris, S. B. A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, R. Schlögl, Appl. Catal. A, 2011, 392, 93-102.
-
[21]
[21] F. Cavani, F. Trifirò, A. Vaccari., Catal Today, 1991, 11, 173-301.
-
[22]
[22] G. J. A. A. Soler-Illia, R.J. Candal, A. E. Regazzoni, M. A. Blesa, Chem. Mater., 1997, 9, 184-191.
-
[23]
[23] Q. J. Ge, Y. M. Huang, F. Y. Qiu, S. B. Li, Appl. Catal. A, 1998, 167, 23-30.
-
[24]
[24] P. S. S. Prasad, J. W. Bae, S. H. Kang, Y J. Lee, K. W. Jun, Fuel Process. Technol., 2008, 89, 1291-1286.
-
[25]
[25] J. H. Flores, G. Solorzano, M. I. P. da Silva, Appl. Surf. Sci., 2008, 254, 6461-6466.
-
[26]
[26] M. Mühler, L. P. Nielsen, E. Törnqvist, B. S. Clausen, H. Topsoee, Catal. Lett., 1992, 14, 241-249.
-
[27]
[27] J. P. Shen, C. Song, Catal. Today, 2002, 77, 89-98.
-
[28]
[28] Y. Lwin, M. A. Yarmo, Z. Yaakob, A. B. Mohamad, W. R. W. Daud, Mater. Res. Bull., 2001, 36, 193-198.
-
[29]
[29] M. Behrens, I. Kasatkin, S. Kühl, G. Weinberg, Chem. Mater., 2010, 22, 386-397.
-
[30]
[30] Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi. J. Phys. Chem., 1983, 87, 3740-3747.
-
[31]
[31] W. L. Dai, Q. Sun, J. F. Deng, D. Wu, Y. H. Sun, Appl. Surf. Sci., 2001, 177, 172-179.
-
[32]
[32] G. Moretti, G. Fierro, M. L. O. Jacono, P. Porta, Surf. Interf. Anal., 1989, 14, 325-336.
-
[33]
[33] A. A. G. Lima, M. Nele, E. L. Moreno, H. M. C. Andrade, Appl. Catal. A, 1998, 171, 31-43.
-
[34]
[34] G. R. Moradi, S. Nosrati, F. Yaripor, Catal. Commun., 2007, 8, 598-606.
-
[35]
[35] D. F. Jin, B. Zhu, Z. Y. Hou, J. H. Fei, H. Lou, X. M. Zheng, Fuel, 2007, 86, 2707-2713.
-
[36]
[36] S. D. Kim, S. C. Baek, Y. J. Lee, K. W. Jun, M. J. Kim, I. S. Yoo, Appl. Catal. A, 2006, 309, 139-143.
-
[37]
[37] X. R. Zhang, L. C. Wang, C. Z. Yao, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan, Catal. Lett., 2005, 102, 183-190.
-
[38]
[38] J. Palgunadi, I. Yati, K. D. Jung, Reac. Kinet. Metch. Catal., 2010, 101, 117-128.
-
[39]
[39] P. Gao, F. Li, F. K. Xiao, N. Zhao, W. Wei, L. S. Zhong, Y. H. Sun, Catal. Today, 2012, 194, 9-15.
-
[40]
[40] P. Gao, F. Li, H. J. Zhan, N. Zhao, F. K. Xiao, W. Wei, L. S. Zhong, H. Wang, Y. H. Sun, J. Catal., 2013, 298, 51-60.
-
[41]
[41] P. Gao, R. Xie, H. Wang, L. Zhang, L. Xia, Z. Zhang, W. Wei, Y. Sun, J. CO2 Utilization, 2015, in press.
-
[42]
[42] Z. Li, S. W. Yan, M. Fan, Fuel, 2013, 106, 178-186.
-
[43]
[43] Z. Li, H. Y. Zheng, K. C. Kie, Chin. J. Catal., 2008, 29, 431-435.
-
[44]
[44] G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, R. Lavecchia, F. Cioci, J. Catal., 1994, 148, 709-721.
-
[45]
[45] B. Lindström, L. J. Pettersson, P. G. Menon, Appl. Catal. A, 2002, 234, 111-125.
-
[46]
[46] U. Constantino, F. Marmottini, M. Nocchetti, R. Vivani, Eur. J. Inorg. Chem., 1998, 1439-1446.
-
[47]
[47] M. M. Günter, T. Ressler, R. E. Jentoft, B. Bems, J. Catal., 2001, 203, 133-149.
-
[48]
[48] J. Agrell, H. Birgersson, M. Boutonnet, I. Meliàn-Cabrera, R. M. Navarro, J. L. G. Fierro, J. Catal., 2003, 219, 389-403.
-
[49]
[49] W. Fu, Z. H. Bao, W. Z. Ding, K. C. Chou, Q. Li, Catal. Commun., 2011, 12, 505-509.
-
[50]
[50] Y. Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, Appl. Catal. A, 2002, 223, 137-145.
-
[51]
[51] W. R. A. M. Robinson, J. C. Mol, Appl. Catal., 1991, 76, 117-129.
-
[52]
[52] K. Fujimoto, H. Kaneko, Q. W. Zhang, Q. J. Ge, X. H. Li, Stud. Surf. Sci. Catal., 2007, 167, 349-354.
-
[53]
[53] J. M. Fougerit, N. S. Gnep, M. Guisnet, Microporous Mesoporous Mater., 1999, 29, 79-89.
-
[54]
[54] K. Asami, Q. W. Zhang, X. H. Li, S. Asaoka, K. Fujimoto, Stud. Surf. Sci. Catal., 2004, 147, 427-432.
-
[55]
[55] Q. J. Ge, T. Tomonobu, K. Fujimoto, X. H. Li, Catal. Commun., 2008, 9, 1775-1778.
-
[56]
[56] C. M. Li, K. Fujimoto, Energy Fuels, 2014, 28, 1331-1337.
-
[57]
[57] C. M. Li, K. Fujimoto, Catal. Sci. Technol., 2015, 5, 4501-4510.
-
[58]
[58] V. M. Mysov, S. I. Reshetnikov, V. G. Stepanov, K. G. Ione, Chem. Eng. J., 2005, 107, 63-71.
-
[1]
-
-
-
[1]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[2]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[3]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[4]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[5]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[6]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[7]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[8]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[10]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[11]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[12]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[13]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[14]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[15]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[16]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[17]
Zhilian Liu , Wengui Wang , Hongxiao Yang , Yu Cui , Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012
-
[18]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[19]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[20]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(409)
- HTML views(42)