Citation: C. Ramakrishna, R. Krishna, T. Gopi, G. Swetha, Bijendra Saini, S. Chandra Shekar, Anchal Srivastava. Complete oxidation of 1,4-dioxane over zeolite-13X-supported Fe catalysts in the presence of air[J]. Chinese Journal of Catalysis, ;2016, 37(2): 240-249. doi: 10.1016/S1872-2067(15)61030-0 shu

Complete oxidation of 1,4-dioxane over zeolite-13X-supported Fe catalysts in the presence of air

  • Corresponding author: C. Ramakrishna, 
  • Received Date: 30 September 2015
    Available Online: 9 December 2015

    Fund Project:

  • Zeolite-13X-supported Fe (Fe/zeolite-13X) catalysts with various Fe contents were prepared by the wet impregnation method. The catalysts were characterized by N2 adsorption-desorption isotherms to estimate the Brunauer-Emmett-Teller surface areas and Barrett-Joyner-Hanlenda pore size distributions. X-ray diffraction, scanning electron microscopy, temperature-programmed reduction, and temperature-programmed desorption of NH3 were used to investigate the textural properties of the Fe/zeolite-13X catalysts. Their catalytic activities were determined for the complete oxidation of 1,4-dioxane using air as the oxidant in a fixed‐bed flow reactor in the temperature range 100-400℃. The influences of various process parameters, such as reaction temperature, metal loading, and gas hourly space velocity (GHSV), on the dioxane removal efficiency by catalytic oxidation were investigated. The stability of the catalyst was tested at 400℃ by performing time-on-stream analysis for 50 h. The Fe/zeolite-13X catalyst with 6 wt% Fe exhibited the best catalytic activity among the Fe/zeolite-13X catalysts at 400℃ and a GHSV of 24000 h-1, with 97% dioxane conversion and 95% selectivity for the formation of carbon oxides (CO and CO2). Trace amounts (< 3%) of acetaldehyde, ethylene glycol monoformate, ethylene glycol diformate, 1,4-dioxane-2-ol, 1,4-dioxane-2-one, and 2-methoxy-1,3-dioxalane were also formed as degradation products. A plausible degradation mechanism is proposed based on the products identified by GC-MS analysis.
  • 加载中
    1. [1]

      [1] National Priorities List sites identified by the EPA, 821, 1518.

    2. [2]

      [2] K. R. Smith, Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13286-13293.

    3. [3]

      [3] S. Budavari, M. J. Neil, A. Smith, P. E. Heckelman, J. F. Kinneary, The Merck Index, 12th ed., Merck & Co., Inc. Whitehouse Station, NJ, 1996.

    4. [4]

      [4] National Industrial Chemicals Notification and Assessment Scheme (NICNAS), 1,4-Dioxane Priority Existing Chemical No-7, Full Public Report, Common Wealth of Australia, 1998.

    5. [5]

      [5] T. Sandy, C. P. Grady Jr., S. Meininger, R. Boe, Annual Industrial Wastes Technical and Regulatory Conference, Conference Proceeding 7th, Charleston, SC, USA, 2001, 88-117.

    6. [6]

      [6] R. Alnaizy, A. Akgerman, Adv. Environ. Res., 2000, 4, 233-244.

    7. [7]

      [7] M. J. Zenker, R. C. Borden, M. A. Barlaz, Environ. Eng. Sci., 2003, 20, 423-432.

    8. [8]

      [8] U.S. Department of Health and Human Services, Seventh Annual Report on Carcinogens, 1994, PB95-109781, 186.

    9. [9]

      [9] S. Mahendra, C. J. Petzold, E. E. Baidoo, J. D. Keasling, L. Alvarez-Cohen, Environ. Sci. Technol., 2007, 41, 7330-7336.

    10. [10]

      [10] S. L. Kelley, E. W. Aitchison, M. Deshpande, J. L. Schnoor, P. J. J. Alvarez, Water Res., 2001, 35, 3791-3800.

    11. [11]

      [11] S. Hand, B. X. Wang, K. H. Chu, Sci. Total Environ., 2015, 520, 154-159.

    12. [12]

      [12] C. D. Adams, P. A. Scanlan, N. D. Secrist, Environ. Sci. Technol., 1994, 28, 1812-1818.

    13. [13]

      [13] S. C. Kwon, J. Y. Kim, S. M. Yoon, W. Bae, K. S. Kang, Y. W. Rhee, J. Ind. Eng. Chem., 2012, 18, 1951-1955.

    14. [14]

      [14] M. A. Beckett, I. Hua, Water Res., 2003, 37, 2372-2376.

    15. [15]

      [15] V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Chemosphere, 1997, 35, 2675-2688.

    16. [16]

      [16] R. R. Hill, G. E. Jeffs, D. R. Roberts, J. Photochem. Photobiol. A, 1997, 108, 55-58.

    17. [17]

      [17] H. M. Coleman, V. Vimonses, G. Leslie, R. Amal, J. Hazard. Mater., 2007, 146, 496-501.

    18. [18]

      [18] B. K. Min, J. E. Heo, N. K. Youn, O. S. Joo, H. Lee, J. H. Kim, H. S. Kim, Catal. Commun., 2009, 10, 712-715.

    19. [19]

      [19] K. C. Lee, H. J. Beak, K. H. Choo, Water Res., 2015, 86, 58-65.

    20. [20]

      [20] H. C. Wang, H. S. Liang, M. B. Chang, J. Hazard. Mater., 2011, 186, 1781-1787.

    21. [21]

      [21] C. B. Almquist, E. Sahle-Demessie, S. C. Shekar, J. Sowash, Environ. Sci. Technol., 2007, 41, 4754-4760.

    22. [22]

      [22] H. Finaga, S. Futamura, J. Catal., 2004, 227, 304-312.

    23. [23]

      [23] M. Iwasaki, M. Hara, S. Ito, J. Mater. Sci. Lett., 1998, 17, 1769-1771.

    24. [24]

      [24] P. V. Kumar, D. Meisel, Curr. Opin. Colloid. Inerface Sci., 2006, 7, 13920-13925.

    25. [25]

      [25] D. M. Huang, D. B. Cao, Y. W. Li, H. J. Jiao, J. Phys. Chem. B, 2006, 110, 13920-13925.

    26. [26]

      [26] O. Shekhah, W. Ranke, A. Schule, G. Kolios, R. Schlogl, Angew. Chem. Int. Ed., 2003, 42, 5760-5763.

    27. [27]

      [27] A. N. Pour, S. Taghipoor, M. Shekarriz, S. M. K. Shahri, Y. Zamani, J. Nanosci. Nanotechnol., 2009, 9, 4425-4429.

    28. [28]

      [28] A. N. Pour, M. R. Housaindokht, S. F. Tayyari, J. Zarkesh, J. Nat. Gas. Chem., 2010, 19, 284-292.

    29. [29]

      [29] S. Eriksson, U. Nylen, S. Rojas, M. Boutonnet, Appl. Catal. A, 2004, 265, 207-219.

    30. [30]

      [30] L. F. Chen, K. K. Zhu, L. H. Bi, A. Suchopar, M. Reicke, G. Mathys, H. Jaensch, U. Kortz, R. M. Richards, Inorg. Chem., 2007, 46, 8457-8459.

    31. [31]

      [31] D. Habibi, A. R. Faraji, M. Arshadi, J. L. G. Fierro, J. Mol. Catal. A, 2013, 372, 90-99.

    32. [32]

      [32] F. Battin, G. Scacchi, F. Baronnet, Int. J. Chem. Kinet., 1991, 23, 861-879.

    33. [33]

      [33] M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 4th ed., 2001, 152-153.

    34. [34]

      [34] S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, 2004, ISBN 1402023022.

    35. [35]

      [35] J. Okal, M. Zawadzki, L. Kepinski, L. Krajczyki, W. Tylus, Appl. Catal. A, 2007, 319, 202-209.

    36. [36]

      [36] W. Q. Yu, B. S. Wu, J. Xu, Z. C. Tao, H. W. Xiang, Y. W. Li, Catal. Lett., 2008, 125, 116-122.

    37. [37]

      [37] J. H. Ma, B. B. Fan, R. F. Li, J. H. Cao, Catal. Lett., 1994, 23, 189-194.

    38. [38]

      [38] G. Munteanu, L. Ilieva, D. Andreeva, Thermochim. Acta, 1997, 291, 171-177.

    39. [39]

      [39] K. C. Wu, Y. L. Tung, Y. L. Chen, Y. W. Chen, Appl. Catal. B, 2004, 53, 111-116.

    40. [40]

      [40] G. W. Chen, S. L. Li, F. J. Jiao, Q. Yuan, Catal. Today, 2007, 125, 111-119.

    41. [41]

      [41] S. C. Shekar, K. Soni, R. Bunkar, M. Sharma, B. Singh, A. Nigam, T. Mahato, R. Vijayaraghavan, Catal. Commun., 2009, 11, 77-81.

    42. [42]

      [42] V. G. Devulapelli, E. Sahle-Demessie, Appl. Catal. A, 2008, 348, 86-93.

    43. [43]

      [43] H. Barndõk, D. Hermosilla, C. Han, D. D. Dionysiou, C. Negroa, A. Blanco, Appl. Catal. B, 2016, 180, 44-52.

    44. [44]

      [44] N. Merayo, D. Hermosilla, L. Cortijo, A. Blanco, J. Hazard. Mater., 2014, 268, 102-109.

    45. [45]

      [45] K. C. Soni, S. C. Shekar, B. Singh, T. Gopi, J. Colloid Interface Sci., 2015, 446, 226-236.

    46. [46]

      [46] M. I. Stefan, J. R. Bolton, Environ. Sci. Technol., 1998, 32, 1588-1595.

    47. [47]

      [47] H. J. Wang, B. Bakheet, S. Yuan, X. Li, G. Yu, S. Murayama, Y. J. Wang, J. Hazard. Mater., 2015, 294, 90-98.

    48. [48]

      [48] V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Chemosphere, 1997, 35, 2675-2688.

    49. [49]

      [49] H. Barndõk, L. Cortijo, D. Hermosilla, C. Negro, A. Blanco, J. Hazard. Mater., 2014, 280, 340-347.

    50. [50]

      [50] H. S. Kim, B. H. Kwon, S. J. Yoa, I. K. Kim, J. Chem. Eng. Jpn., 2008, 41, 829-835.

  • 加载中
    1. [1]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    7. [7]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(0)
  • Abstract views(525)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return