Citation: Huiru Zhao, Shumei Shi, Jinxiong Wu, Yue Ding, Niu Li. Charge compensation dominates the distribution of silica in SAPO-34[J]. Chinese Journal of Catalysis, ;2016, 37(2): 227-233. doi: 10.1016/S1872-2067(15)61025-7 shu

Charge compensation dominates the distribution of silica in SAPO-34

  • Corresponding author: Niu Li, 
  • Received Date: 13 November 2015
    Available Online: 23 November 2015

    Fund Project: 天津市自然科学基金(12JCYBJC 12700). (12JCYBJC 12700)

  • The distribution of Si atoms in the SAPO-34 framework determines its acidity and catalytic effects. This was investigated using the charge balance between the inorganic framework and trapped template ions. Three types of templates, which yielded R+, 2R+ and 2R2+ positive charges in the cages of SAPO-34, were obtained from single crystal data and they were used to direct the synthesis of SAPO-34 with different Si contents and formation of isolated Si atoms and Si islands in the lattice. The concentration limits of SiO2 in the gel for constituting isolated Si atoms were calculated and verified experimentally. Si islands, including 5-Si, 8-Si, 11-Si, 14-Si island were described on the basis of host-guest charge compensation. An overall view of the distribution of Si atoms in SAPO-34 was given and a criterion for the strength and density of acid sites in SAPO-34 for it to be an efficient catalyst for MTO was made available.
  • 加载中
    1. [1]

      [1] U. Olsbye, S. Svelle, M. Bjøgen, P. Beato, T. V. W. Janssens, F. Joensen, S. Bordiga, K. P. Lillerud, Angew. Chem. Int. Ed., 2012, 51, 5810.

    2. [2]

      [2] J. Lefevere, S. Mullens, V. Meynen, J. Van Noyen, Chem. Papers, 2014, 68, 1143.

    3. [3]

      [3] M. Charghand, M. Haghighi, S. Aghamohammadi, Ultrasonics. Sonochem., 2014, 21, 1827.

    4. [4]

      [4] G. Y. Liu, P. Tian, Z. M. Liu, Chin. J. Catal., 2012, 33, 174.

    5. [5]

      [5] M. Guisnet, L. Costa, F. R. Ribeiro, J. Mol. Catal. A, 2009, 305, 69.

    6. [6]

      [6] W. L. Dai, G. J. Wu, N. D. Li, N. J. Guan, M. Hunger, ACS Catal., 2013, 3, 588.

    7. [7]

      [7] T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, Catal. Today, 2012, 179, 27.

    8. [8]

      [8] J. Z. Li, Y. X. Wei, J. R. Chen, P. Tian, X. Su, S. T. Xu, Y. Qi, Q. Y. Wang, Y. Zhou, Y. L. He, Z. M. Liu, J. Am. Chem. Soc., 2012, 133, 836.

    9. [9]

      [9] S. Askari, R. Halladj, M. Sohrabi, Rev. Adv. Mater. Sci., 2012, 32, 83.

    10. [10]

      [10] B. P. C. Hereijgers, F. Bleken, M. H. Nilsen, S. Svelle, K. P. Lillerud, M. Bjøgen, B. M. Weckhuysen, U. Olsbye, J. Catal., 2009, 264, 77.

    11. [11]

      [11] T. Álvaro-Muñoz, C. Álvarez, E. Sastre, Appl. Catal. A, 2014, 472, 72.

    12. [12]

      [12] D. Chen, K. Moljord, A. Holmen, Microporous Mesoporous Mater., 2012, 164, 239.

    13. [13]

      [13] S. Bordiga, L. Regli, C. Lamberti, A. Zeccina, M. Bjorgen, K. P. Lillerud, J. Phys. Chem. B, 2005, 109, 7724.

    14. [14]

      [14] Z. B. Li, J. Martinez-Triguero, P. Concepción, J. Yu, A. Corma, Phys. Chem. Chem. Phys., 2013, 15, 14670.

    15. [15]

      [15] G. J. Yang, Y. X. Wei, S. T. Xu, J. R. Chen, J. Z. Li, Z. M. Liu, J. H. Yu, R. R. Xu, J. Phys. Chem. C, 2013, 117, 8214.

    16. [16]

      [16] E. Kang, T. Kim, H. Chae, M. Kim, K. Jeong, J. Kim, C. Kim, S. Jeong, J. Nanosci. Nanotechnol., 2013, 13, 7498.

    17. [17]

      [17] L. Wu, Z. Y. Liu, M. H. Qiu, C. G. Yang, L. Xia, X. Liu, Y. H. Sun, React. Kinet. Mech. Catal., 2014, 111, 319.

    18. [18]

      [18] Q. M. Sun, N. Wang, D. Y. Xi, M. Yang, J. H. Yu, Chem. Commun., 2014, 50, 6502.

    19. [19]

      [19] H. Hajfarajollah, S. Askari, R. Halladj, React. Kinet. Mech. Catal., 2014, 111, 723.

    20. [20]

      [20] Q. Y. Qian, J. Ruiz-Martínez, M. Mokhtar, A. M. Asiri, S. A. Al-Thabaiti, S. N. Basahel, B. M. Weckhuyse, ChemCatChem, 2014, 6, 772.

    21. [21]

      [21] N. Nishiyama, M. Kawaguchi, Y. Hirota, D. Van Vu, Y. Egashira, K. Ueyama, Appl. Catal. A, 2009, 362, 193.

    22. [22]

      [22] Y. J. Lee, S. C. Baek, K. W. Jun, Appl. Catal. A, 2007, 329, 130.

    23. [23]

      [23] Q. Y. Qian, J. Ruiz Martínez, M. Mokhtar, A. M. Asiri, S. A. Al-Thabaiti, S. N. Basahel, H. E. Van der Bij, J. Kornatowski, B. M. Weckhuysen, Chem. Eur. J., 2013, 19, 11204.

    24. [24]

      [24] W. L. Dai, N. Li, L. D. Li, N. J. Guan, M. Hunger, Catal. Commun., 2011, 16, 124.

    25. [25]

      [25] W. L. Dai, X. Wang, G. J. Wu, L. D. Li, N. J. Guan, M. Hunger, ChemCatChem, 2012, 4, 1428.

    26. [26]

      [26] G. Y. Liu, P. Tian, Y. Zhang, J. Z. Li, L. Xu, S. H. Meng, Z. M. Liu, Microporous Mesoporous Mater., 2008, 114, 416.

    27. [27]

      [27] H. O. Pastore, S. Coluccia, L. Marchese, Annu. Rev. Mater. Res., 2005, 35, 351.

    28. [28]

      [28] G. V. A. Martins, G. Berlier, C. Bisio, S. Coluccia, H. O. Pastore, L. Marchese, J. Phys. Chem. C, 2008, 112, 7193.

    29. [29]

      [29] E. M. Flanigen, R. L. Patton, S. T. Wilson, Stud. Surf. Sci. Catal., 1988, 37, 13.

    30. [30]

      [30] R. Vomscheid, M. Briend, M. J. Peltre, P. P. Man, D. Barthomeu, J. Phys. Chem., 1994, 98, 9614.

    31. [31]

      [31] M. Salmasi, S. Fatemi, A. T. Najafabadi, J. Ind. Eng. Chem., 2011, 17, 755.

    32. [32]

      [32] G. Sankar, J. K. Wyles, C. R. A. Catlow, Top. Catal., 2003, 24, 1.

    33. [33]

      [33] R. Alexander, N. Khanh, D. Hong, Petrovietnam, 2014, 6, 34.

    34. [34]

      [34] D. Fan, P. Tian, X. Su, Y. Y. Yuan, D. H. Wang, C. Wang, M. Yang, L. Y. Wang, S. T. Xu, Z. M. Liu, J. Mater. Chem. A, 2013, 1, 14206.

    35. [35]

      [35] N. Li, Y. F. Ma, W. B. Kong, N. J. Guan, S. H. Xiang, Microporous Mesoporous Mater., 2008, 115, 356.

    36. [36]

      [36] S. T. Wilson, Stud. Surf. Sci. Catal., 2001, 137, 229.

    37. [37]

      [37] A. Meden, N. Novak, V. Kaučič, Mater. Sci. Forum., 1994, 166-169, 613.

    38. [38]

      [38] Y. Iwase, K. Motokura, T. Koyama, A. Miyaji, T. Baba, Phys. Chem. Chem. Phys., 2009, 11, 9268.

    39. [39]

      [39] H. Van Heyden, S. Mintova, T. Bein, Chem. Mater., 2008, 20, 2956.

    40. [40]

      [40] Y. Ding, N. Li, N. J. Guan, H. G. Wang, H. B. Song, S. H. Xiang, Microporous Mesoporous Mater., 2012, 147, 68.

    41. [41]

      [41] Y. Ding, N. Li, N. J. Guan, S. H. Xiang, Acta Sci. Natura. Univer. Nankai, 2011, 44, 57.

    42. [42]

      [42] H. Zhao, PhD Dissertation, Synthesizing SAPO-34 with the Si Distribution in the Framework Controlled, Nankai University, 2014.

    43. [43]

      [43] D. H. Wang, P. Tian, M. Yang, S. T. Xu, D. Fan, X. Su, Y. Yang, C. Wang, Z. M. Liu, Microporous Mesoporous Mater., 2014, 194, 8.

    44. [44]

      [44] H. J. Chae, I. J. Park, Y. H. Song, K. E. Jeong, C. U. Kim, C. H. Shin, S. Y. Jeong, J. Nanosci. Nanotechnol., 2010, 10, 195.

    45. [45]

      [45] T. Álvaro-Muñoz, C. Márquez-Álvarez, E. Sastre, Catal. Today, 2013, 215, 208.

    46. [46]

      [46] L. P. Ye, F. H. Cao, W. Y. Ying, D. Y. Fang, Q. W. Sun, J. Porous Mater., 2011, 18, 225.

    47. [47]

      [47] M. Salmasi, S. Fatemi, A. Najafabadi, J. Ind. Eng. Chem., 2011, 17, 755.

    48. [48]

      [48] F. M. Shalmani, R. Halladj, S. Askari, Powder Technol., 2012, 221, 395.

    49. [49]

      [49] F. C. Sena, B. F. de Souza, N. C. de Almeida, J. S. Cardoso, L. D. Fernandes, Appl. Catal. A, 2011, 406, 59.

    50. [50]

      [50] S. Aghamohammadi, M. Haghighi, M. Charghand, Mater. Res. Bull, 2014, 50, 462.

    51. [51]

      [51] M. Strauss, G. A. V. Martins, G. Berlier, S. Coluccia, L. O. Marchese, H. O. Pastore, Microporous Mesoporous Mater., 2014, 187, 135.

    52. [52]

      [52] A. H. Zhang, S. L. Sun, Z. J. A. Komon, N. Osterwalder, S. Gadewar, P. Stoimenov, D. J. Auerbach, G. D. Stucky, E. W. McFarland, Phys. Chem. Chem. Phys., 2011, 13, 2550.

    53. [53]

      [53] A. Buchholz, W. Wang, M. Xu, A. Arnold, M. Hunger, Microporous Mesoporous Mater., 2002, 56, 267.

    54. [54]

      [54] M. Derewinski, M. J. Peltre, M. Briend, D. Barthomeuf, P. P. Man, J. Chem. Soc., Faraday Trans., 1993, 89, 1823.

    55. [55]

      [55] M. Zokaie, U. Olsbye, K. P. Lillerud, O. Swang, J. Phys. Chem. C, 2012, 116, 7255.

    56. [56]

      [56] M. G. O'Brien, A. M. Beale, C. R. A. Catlow, B. M. Weckhuysen, J. Am. Chem. Soc., 2006, 128, 11744.

    57. [57]

      [57] L. Xu, A. P. Du, Y. X. Wei, Y. L. Wang, Z. X. Yu, Y. L. He, X. Z. Zhang, Z. M. Liu, Microporous Mesoporous Mater., 2008, 115, 332.

    58. [58]

      [58] A. Izadbakhsh, F. Farhadi, F. Khorasheh, S. Sahebdelfar, M. Asadi, Z. F. Yan, Microporous Mesoporous Mater., 2009, 126, 1.

    59. [59]

      [59] A. M. Prakash, S. Unnikrirhnan, J. Chem. Soc., Faraday Trans., 1994, 90, 2291.

    60. [60]

      [60] H. Kessler, J. Patarin, C. Schott-Darie, Stud. Surf. Sci. Catal., 1994, 85, 75.

    61. [61]

      [61] R. Y. Pei, Z. J. Tian, Y. Wei, K. D. Li, Y. P. Xu, L. Wang, H. J. Ma, Mater. Lett., 2010, 64, 2384.

    62. [62]

      [62] S. Girard, J. D. Gale, C. Mellot-Draznieks, G. Férey, J. Am. Chem. Soc., 2002, 124, 1040.

    63. [63]

      [63] C. G. Wang, J. X. Wu, M. C. Hu, N. Li, N. J. Guan, S. H. Xiang, J. Porous Mater., 2012, 19, 751.

    64. [64]

      [64] J. X. Wu, H. R. Zhao, N. Li, Q. Q. Luo, C. Q. He, N. J. Guan, S. H. Xiang, CrystEngComm, 2012, 14, 8671.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    6. [6]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    15. [15]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    16. [16]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    17. [17]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    18. [18]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    19. [19]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    20. [20]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

Metrics
  • PDF Downloads(2)
  • Abstract views(862)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return