Citation: Lingyan Wang, Linhai Zhuo, Fengyu Zhao. Carbon dioxide-expanded ethanol-assisted synthesis of carbon-based metal composites and their catalytic and electrochemical performance in lithium-ion batteries[J]. Chinese Journal of Catalysis, ;2016, 37(2): 218-226. doi: 10.1016/S1872-2067(15)61024-5 shu

Carbon dioxide-expanded ethanol-assisted synthesis of carbon-based metal composites and their catalytic and electrochemical performance in lithium-ion batteries

  • Corresponding author: Linhai Zhuo,  Fengyu Zhao, 
  • Received Date: 5 November 2015
    Available Online: 2 December 2015

    Fund Project: 国家自然科学基金会与日本学术振兴会国际合作项目(21311140166) (21311140166) 国家自然科学基金(21273222) (21273222) 山东省科技计划项目(2014GGX102020) (2014GGX102020) 山东省高校科技计划项目(J14LC08) (J14LC08) 曲阜师范大学科技计划项目(xkj201508). (xkj201508)

  • Highly dispersed metals, metal oxides and their composites on substrates have received considerable interest in catalysis and lithium-ion batteries, because of their superior properties compared with their single-component counterparts. In this review, we introduce the properties of supercritical carbon dioxide (scCO2) expanded ethanol, such as low viscosity, near-zero surface tension and high diffusivity. We discuss the deposition procedure and formation mechanism of carbon-based composites in scCO2-expanded ethanol. This method has been used to fabricate several carbon-based composites, such as metal and metal oxide composites deposited on zero-dimensional colloidal carbon, one-dimensional carbon nanotubes, two-dimensional graphene, and three-dimensional hierarchical porous carbon. These materials and their performance as anodic materials for lithium-ion batteries will also be reviewed.
  • 加载中
    1. [1]

      [1] Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science, 2004, 304, 711-714.

    2. [2]

      [2] P. M. Arnal, M. Comotti, F. Schüth, Angew. Chem. Int. Ed., 2006, 45, 8224-8227.

    3. [3]

      [3] J. M. Yan, X. B. Zhang, T. Akita, M. Haruta, Q. Xu, J. Am. Chem. Soc., 2010, 132, 5326-5327.

    4. [4]

      [4] S. Yang, W. B. Yue, J. Zhu, Y. Ren, X. J. Yang, Adv. Funct. Mater., 2013, 23, 3570-3576.

    5. [5]

      [5] C. N. He, S. Wu, N. Q. Zhao, C. S. Shi, E. Z. Liu, J. J. Li, ACS Nano, 2013, 7, 4459-4469.

    6. [6]

      [6] Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li, H. M. Cheng, ACS Nano, 2010, 4, 3187-3194.

    7. [7]

      [7] Y. J. Gao, D. Ma, C. L. Wang, J. Guan, X. H. Bao, Chem. Commun., 2011, 47, 2432-2434.

    8. [8]

      [8] X. M. Chen, G. H. Wu, J. M. Chen, X. Chen, Z. X. Xie, X. R. Wang, J. Am. Chem. Soc., 2011, 133, 3693-3695.

    9. [9]

      [9] Z. Y. Sun, Y. F. Zhao, Y. Xie, R. T. Tao, H. Y. Zhang, C. L. Huang, Z. M. Liu, Green Chem., 2010, 12, 1007-1011.

    10. [10]

      [10] Y. F. Zhao, H. Y. Zhang, C. L. Huang, S. Chen, Z. M. Liu, J. Colloid Interf. Sci., 2012, 374, 83-88.

    11. [11]

      [11] N. Li, M. H. Cao, Q. Y. Wu, C. W. Hu, CrystEngComm, 2012, 14, 428-434.

    12. [12]

      [12] P. Balaya, Energy Environ. Sci., 2008, 1, 645-654.

    13. [13]

      [13] E. Kang, Y. S. Jung, A. S. Cavanagh, G. H. Kim, S. M. George, A. C. Dillon, J. K. Kim, J. Lee, Adv. Funct. Mater., 2011, 21, 2430-2438.

    14. [14]

      [14] X. R. Ye, Y. H. Lin, C. M. Wang, M. H. Engelhard, Y. Wang, C. M. Wai, J. Mater. Chem., 2004, 14, 908-913.

    15. [15]

      [15] L. Fu, Z. M. Liu, Y. Q. Liu, B. X. Han, P. A. Hu, L. C. Cao, D. B. Zhu, Adv. Mater., 2005, 17, 217-221.

    16. [16]

      [16] L. Fu, Z. M. Liu, Y. Q. Liu, B. X. Han, J. Q. Wang, P. A. Hu, L. C. Cao, D. B. Zhu, Adv. Mater., 2004, 16, 350-352.

    17. [17]

      [17] L. Fu, Y. Q. Liu, Z. M. Liu, B. X. Han, L. C. Cao, D. C. Wei, G. Yu, D. B. Zhu, Adv. Mater., 2006, 18, 181-185.

    18. [18]

      [18] Z. Y. Sun, H. Q. Yuan, Z. M. Liu, B. X. Han, X. R. Zhang, Adv. Mater., 2005, 17, 2993-2997.

    19. [19]

      [19] Z. Y. Sun, X. R. Zhang, N. Na, Z. M. Liu, B. X. Han, G. M. An, J. Phys. Chem. B, 2006, 110, 13410-13414.

    20. [20]

      [20] Z. Y. Sun, X. R. Zhang, B. X. Han, Y. Y. Wu, G. M. An, Z. M. Liu, S. D. Miao, Z. J. Miao, Carbon, 2007, 45, 2589-2596.

    21. [21]

      [21] J. Ming, H. Y. Cheng, Y. C. Yu, Y. Q. Wu, F. Y. Zhao, J. Mater. Chem., 2011, 21, 6654-6659.

    22. [22]

      [22] Q. Wang, H. Y. Cheng, R. X. Liu, J. M. Hao, Y. C. Yu, F. Y. Zhao, Green Chem., 2010, 12, 1417-1422.

    23. [23]

      [23] L. H. Zhuo, Y. Q. Wu, J. Ming, L. Y. Wang, Y. C. Yu, X. B. Zhang, F. Y. Zhao, J. Mater. Chem. A, 2013, 1, 1141-1147.

    24. [24]

      [24] L. Y. Wang, L. H. Zhuo, H. Y. Cheng, C. Zhang, F. Y. Zhao, J. Power Sources, 2015, 283, 289-299.

    25. [25]

      [25] L. H. Zhuo, Y. Q. Wu, W. Zhou, L. Y. Wang, Y. C. Yu, X. B. Zhang, F. Y. Zhao, ACS Appl. Mater. Interf., 2013, 5, 7065-7071.

    26. [26]

      [26] L. H. Zhuo, Y. Q. Wu, L. Y. Wang, J. Ming, Y. C. Yu, X. B. Zhang, F. Y. Zhao, J. Mater. Chem. A, 2013, 1, 3954-3960.

    27. [27]

      [27] L. Y. Wang, L. H. Zhuo, C. Zhang, F. Y. Zhao, J. Power Sources, 2015, 275, 650-659.

    28. [28]

      [28] L. Y. Wang, L. H. Zhuo, C. Zhang, F. Y. Zhao, Chem. Eur. J., 2014, 20, 4308-4315.

    29. [29]

      [29] L. Y. Wang, L. H. Zhuo, C. Zhang, F. Y. Zhao, ACS Appl. Mater. Interf., 2014, 6, 10813-10820.

    30. [30]

      [30] C. Erkey, J. Supercrit. Fluids, 2009, 47, 517-522.

    31. [31]

      [31] J. Ming, C. Y. Wu, H. Y. Cheng, Y. C. Yu, F. Y. Zhao, J. Supercrit. Fluids, 2011, 57, 137-142.

    32. [32]

      [32] V. Chabot, D. Higgins, A. P. Yu, X. C. Xiao, Z. W. Chen, J. J. Zhang, Energy Environ. Sci., 2014, 7, 1564-1596.

    33. [33]

      [33] W. Y. Bian, Z. R. Yang, P. Strasser, R. Z. Yang, J. Power Sources, 2014, 250, 196-203.

    34. [34]

      [34] D. N. Wang, J. L. Yang, X. F. Li, D. S. Geng, R. Y. Li, M. Cai, T. K. Sham, X. L. Sun, Energy Environ. Sci., 2013, 6, 2900-2906.

    35. [35]

      [35] W. Wei, S. B. Yang, H. X. Zhou, I. Lieberwirth, X. L. Feng, K. Muellen, Adv. Mater., 2013, 25, 2909-2914.

    36. [36]

      [36] L. W. Yin, Z. W. Zhang, Z. Q. Li, F. B. Hao, Q. Li, C. X. Wang, R. H. Fan, Y. X. Qi, Adv. Funct. Mater., 2014, 24, 4176-4185.

    37. [37]

      [37] Y. H. Jin, S. D. Seo, H. W. Shim, K. S. Park, D. W. Kim, Nanotechnology, 2012, 23, 125402-125402.

    38. [38]

      [38] J. W. Xiao, G. L. Xu, S. G. Sun, S. H. Yang, Part. Part. Syst. Charact., 2013, 30, 893-904.

    39. [39]

      [39] H. Kim, D. H. Seo, S. W. Kim, J. Kim, K. Kang, Carbon, 2011, 49, 326-332.

    40. [40]

      [40] B. J. Li, H. Q. Cao, J. Shao, G. Q. Li, M. Z. Qu, G. Yin, Inorg. Chem., 2011, 50, 1628-1632.

    41. [41]

      [41] H. L. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai, J. Am. Chem. Soc., 2010, 132, 13978-13980.

    42. [42]

      [42] J. Su, M. H. Cao, L. Ren, C. W. Hu, J. Phys. Chem. C, 2011, 115, 14469-14477.

    43. [43]

      [43] M. Sathish, T. Tomai, I. Honma, J. Power Sources, 2012, 217, 85-91.

    44. [44]

      [44] Y. Q. Zou, J. Kan, Y. Wang, J. Phys. Chem. C, 2011, 115, 20747-20753.

    45. [45]

      [45] L. Q. Lu, Y. Wang, J. Mater. Chem., 2011, 21, 17916-17921.

    46. [46]

      [46] B. Wang, X. L. Wu, C. Y. Shu, Y. G. Guo, C. R. Wang, J. Mater. Chem., 2010, 20, 10661-10664.

    47. [47]

      [47] L. Estevez, R. Dua, N. Bhandari, A. Ramanujapuram, P. Wang, E. P. Giannelis, Energy Environ. Sci., 2013, 6, 1785-1790.

    48. [48]

      [48] G. Srinivas, V. Krungleviciute, Z. X. Guo, T. Yildirim, Energy Environ. Sci., 2014, 7, 335-342.

    49. [49]

      [49] D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc., 2012, 134, 16127-16130.

    50. [50]

      [50] Z. K. Sun, B. Sun, M. H. Qiao, J. Wei, Q. Yue, C. Wang, Y. H. Deng, S. Kaliaguine, D. Y. Zhao, J. Am. Chem. Soc., 2012, 134, 17653-17660.

    51. [51]

      [51] T. B. Wu, P. Zhang, J. Ma, H. L. Fan, W. T. Wang, T. Jiang, B. X. Han, Chin. J. Catal., 2013, 34, 167-175.

    52. [52]

      [52] B. Zhang, M. Xiao, S. J. Wang, D. M. Han, S. Q. Song, G. H. Chen, Y. Z. Meng, ACS Appl. Mater. Interf., 2014, 6, 13174-13182.

    53. [53]

      [53] Y. S. Hu, P. Adelhelm, B. M. Smarsly, S. Hore, M. Antonietti, J. Maier, Adv. Funct. Mater., 2007, 17, 1873-1878.

    54. [54]

      [54] K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, A. Stein, Adv. Funct. Mater., 2005, 15, 547-556.

    55. [55]

      [55] H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, J. Phys. Chem. C, 2007, 111, 227-233.

    56. [56]

      [56] W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, Carbon, 2006, 44, 216-224.

    57. [57]

      [57] H. L. Wang, Q. M. Gao, J. Hu, J. Am. Chem. Soc., 2009, 131, 7016-7022.

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    6. [6]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(0)
  • Abstract views(627)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return