Citation:
Urvi Panchal, Krunal Modi, Manthan Panchal, Viren Mehta, Vinod K. Jain. Catalytic activity of recyclable resorcinarene-protected antibacterial Pd nanoparticles in C-C coupling reactions[J]. Chinese Journal of Catalysis,
;2016, 37(2): 250-257.
doi:
10.1016/S1872-2067(15)61021-X
-
Novel tetra-methoxy resorcinarene tetra-hydrazide (TMRTH) has been synthesized and used as a reducing agent and a capping agent for the synthesis of water-dispersible stable palladium nanoparticles (PdNPs). The TMRTH-PdNPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. The synthesized nanoparticles are polydispersible with a size of 5 ± 2 nm and were found to be recyclable over five cycles maintaining a catalytic activity in the Suzuki-Miyuara cross-coupling reaction. The nanocatalyst was superior in catalytic performance to conventional palladium catalysts with respect to reaction time, catalyst loading and recyclability. TMRTH-PdNPs show promise for their use in biological applications as they exhibit good antibacterial activity against gram-positive bacteria.
-
-
-
[1]
[1] R. Tatumi, T. Akita, H. Fujihara, Chem. Commun., 2006, 3349-3351.
-
[2]
[2] S. Olveira, S. P. Forster, S. Seeger, J. Nanotechnol., 2014, 2014, Article ID 324089.
-
[3]
[3] S. Mandal, D. Roy, R. V. Chaudhari, M. Sastry, Chem. Mater., 2004, 16, 3714-3724.
-
[4]
[4] G. Collins, M. Schmidt, C. O'Dwyer, G. McGlacken, J. D. Holmes, ACS Catal., 2014, 4, 3105-3111.
-
[5]
[5] C. Petrucci, M. Cappelletti, O. Piermatti, M. Nocchetti, M. Pica, F. Pizzo, L. Vaccaro, J. Mol. Catal. A, 2015, 401, 27-34.
-
[6]
[6] A. Khalafi-Nezhad, F. Panahi, ACS Sustainable Chem. Eng., 2014, 2, 1177-1186.
-
[7]
[7] M. Nasrollahzadeh, S. M. Sajadi, E. Honarmand, M. Maham, New J. Chem., 2015, 39, 4745-4752.
-
[8]
[8] J. Sun, X. J. Feng, Z. R. Zhao, Y. Yamamoto, M. Bao, Tetrahedron, 2014, 70, 7166-7171.
-
[9]
[9] Q. M. Kainz, R. Linhardt, R. N. Grass, G. Vilé, J. Pérez-Ramírez, W. J. Stark, O. Reiser, Adv. Funct. Mater., 2014, 24, 2020-2027.
-
[10]
[10] R. Long, Z. L. Rao, K. K. Mao, Y. Li, C. Zhang, Q. L. Liu, C. M. Wang, Z. Y. Li, X. J. Wu, Y. J. Xiong, Angew. Chem. Int. Ed., 2015, 54, 2425-2430.
-
[11]
[11] S. S. Gujral, S. Khatri, P. Riyal, V. Gahlot, Indo. Global. J. Pharm. Sci., 2013, 2, 351-367.
-
[12]
[12] V. Polshettiwar, C. Len, A. Fihri, Coord. Chem. Rev., 2009, 253, 2599-2626.
-
[13]
[13] J. W. Sun, Y. S. Fu, G. Y. He, X. Q. Sun, X. Wang, Appl. Catal. B, 2015, 165, 661-667.
-
[14]
[14] G. D. Ding, W. T. Wang, T. Jiang, B. T. Han, Green Chem., 2013, 15, 3396-3403.
-
[15]
[15] T. Sun, Z. Y. Zhang, J. W. Xiao, C. Chen, F. Xiao, S. Wang, Y. Q. Liu, Sci. Rep., 2013, 3, 2527.
-
[16]
[16] H. Y. Shen, C. Shen, C. Chen, A. M. Wang, P. F. Zhang, Catal. Sci. Technol., 2015, 5, 2065-2071.
-
[17]
[17] P. D. Burton, T. J. Boyle, A. K. Datye, J. Catal., 2011, 280, 145-149.
-
[18]
[18] J. Cookson, Platinum Metals Rev., 2012, 56(2), 83-98.
-
[19]
[19] V. Huc, K. Pelzer, J. Colloid Interface Sci., 2008, 318, 1-4.
-
[20]
[20] H. Imahori, Y. Kashiwagi, Y. Endo, T. Hanada, Y. Nishimura, I. Yamazaki, Y. Araki, O. Ito, S. Fukuzumi, Langmuir, 2004, 20, 73-81.
-
[21]
[21] J. D. Senra, L. F. B. Malta, M. E. H. M. da Costa, R. C. Michel, L. C. S. Aguiar, A. B. C. Simas, O. A. C. Antunes, Adv. Synth. Catal., 2009, 351, 2411-2422.
-
[22]
[22] B. A. Makwana, D. J. Vyas, K. D. Bhatt, V. K. Jain, Y. K. Agrawal, Spectrochim. Acta A, 2015, 134, 73-80.
-
[23]
[23] V. K. Jain, P. H. Kanaiya, Russ. Chem. Rev., 2011, 80, 75-102.
-
[24]
[24] L. Sapozhnikova, O. Altshuler, N. Malyshenko, G. Shkurenko, E. Ostapova, B. Tryasunov, H. Altshuler, Int. J. Hydrogen Energy, 2011, 36, 1259-1263.
-
[25]
[25] Y. Sun, Y. Yao, C. G. Yan, Y. Han, M. Shen, ACS Nano, 2010, 4, 2129-2141.
-
[26]
[26] M. Luostarinen, K. Salorinne, H. Lähteenmäki, H. Mansikkamäki, C. A. Schalley, M. Nissinen, K. Rissanen, J. Inclusion Phenomena Macrocyclic. Chem., 2007, 58, 71-80.
-
[27]
[27] D. J. Vyas, B. A. Makwana, H. S. Gupte, K. D. Bhatt, V. K. Jain, J. Nanosci. Nanotechnol., 2012, 12, 3781-3787.
-
[28]
[28] D. R. Mishra, S. M. Darjee, K. D. Bhatt, K. M. Modi, V. K. Jain, J. Inclusion Phenomena Macrocyclic. Chem., 2015, 82, 425-436.
-
[29]
[29] J. Athilakshmi, D. K. Chand, J. Chem. Sci., 2011, 123, 875-881.
-
[30]
[30] T. Teranishi, M. Miyake, Chem. Mater., 1998, 10, 594-600.
-
[31]
[31] S. Navaladian, B. Viswanathan, T. K. Varadarajan, R. P. Viswanath, Nanoscale Res. Lett., 2009, 4, 181-186.
-
[32]
[32] P. Puthiaraj, W. S. Ahn, Catal. Commun., 2015, 65, 91-95.
-
[33]
[33] E. E. Kalu, M. Daniel, M. R. Bockstaller, Int. J. Electrochem. Sci., 2012, 7, 5297-5313.
-
[34]
[34] Y. L. Cui, X. N. Guo, Y. Y. Wang, X. Y. Guo, Chin. J. Catal., 2015, 36, 322-327.
-
[35]
[35] J. L. Zhang, L. Zhao, M. P. Song, T. C. W. Mak, Y. J. Wu, J. Organometal. Chem., 2006, 691, 1301-1306.
-
[36]
[36] F. Alonso, I. P. Beletskaya, M. Yus, Tetrahedron, 2008, 64, 3047-3101.
-
[37]
[37] A. Mousa, Synthesis and Reactivity of (PCNMe) Pincer Palladium Complexes, Lund University, Lund, 2013.
-
[38]
[38] B. Spellberg, J. H. Powers, E. P. Brass, L. G. Miller, J. E. Edwards Jr., Clin. Infect. Diseases, 2004, 38, 1279-1286.
-
[39]
[39] T. Sibanda, A. I. Okoh, Afr. J. Biotechnol., 2007, 6, 2886-2896.
-
[40]
[40] K. Bush, M. Macielag, Curr. Opinion Chem. Biology, 2000, 4, 433-439.
-
[41]
[41] A. F. Elhusseiny, H. H. A. M. Hassan, Spectrochim. Acta A, 2013, 103, 232-245.
-
[42]
[42] S. Y. Park, S. Y. Ryu, S. Y. Kwak, in: 2010 International Conference on Biology, Environment and Chemistry, Hong Kong, 2010.
-
[43]
[43] S. Kang, M. Herzberg, D. F. Rodrigues, M. Elimelech, Langmuir, 2008, 24, 6409-6413.
-
[44]
[44] N. C. Desai, P. N. Shihora, D. L. Moradia, Indian J. Chem. B, 2007, 46, 550-553.
-
[45]
[45] K. Sztanke, T. Tuzimski, J. Rzymowska, K. Pasternak, M. Kandefer-Szerszeń, Eur. J. Med. Chem., 2008, 43, 404-419.
-
[46]
[46] V. K. Tandon, D. B. Yadav, A. K. Chaturvedi, P. K. Shukla, Bioorg. Med. Chem. Lett., 2005, 15, 3288-3291.
-
[1]
-
-
-
[1]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[2]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[3]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[4]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[5]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[6]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[7]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[8]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[9]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[10]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[11]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[12]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[13]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[14]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[15]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[16]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[17]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[18]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[19]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[20]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(554)
- HTML views(51)