Citation: Urvi Panchal, Krunal Modi, Manthan Panchal, Viren Mehta, Vinod K. Jain. Catalytic activity of recyclable resorcinarene-protected antibacterial Pd nanoparticles in C-C coupling reactions[J]. Chinese Journal of Catalysis, ;2016, 37(2): 250-257. doi: 10.1016/S1872-2067(15)61021-X shu

Catalytic activity of recyclable resorcinarene-protected antibacterial Pd nanoparticles in C-C coupling reactions

  • Corresponding author: Vinod K. Jain, 
  • Received Date: 8 October 2015
    Available Online: 17 October 2015

  • Novel tetra-methoxy resorcinarene tetra-hydrazide (TMRTH) has been synthesized and used as a reducing agent and a capping agent for the synthesis of water-dispersible stable palladium nanoparticles (PdNPs). The TMRTH-PdNPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. The synthesized nanoparticles are polydispersible with a size of 5 ± 2 nm and were found to be recyclable over five cycles maintaining a catalytic activity in the Suzuki-Miyuara cross-coupling reaction. The nanocatalyst was superior in catalytic performance to conventional palladium catalysts with respect to reaction time, catalyst loading and recyclability. TMRTH-PdNPs show promise for their use in biological applications as they exhibit good antibacterial activity against gram-positive bacteria.
  • 加载中
    1. [1]

      [1] R. Tatumi, T. Akita, H. Fujihara, Chem. Commun., 2006, 3349-3351.

    2. [2]

      [2] S. Olveira, S. P. Forster, S. Seeger, J. Nanotechnol., 2014, 2014, Article ID 324089.

    3. [3]

      [3] S. Mandal, D. Roy, R. V. Chaudhari, M. Sastry, Chem. Mater., 2004, 16, 3714-3724.

    4. [4]

      [4] G. Collins, M. Schmidt, C. O'Dwyer, G. McGlacken, J. D. Holmes, ACS Catal., 2014, 4, 3105-3111.

    5. [5]

      [5] C. Petrucci, M. Cappelletti, O. Piermatti, M. Nocchetti, M. Pica, F. Pizzo, L. Vaccaro, J. Mol. Catal. A, 2015, 401, 27-34.

    6. [6]

      [6] A. Khalafi-Nezhad, F. Panahi, ACS Sustainable Chem. Eng., 2014, 2, 1177-1186.

    7. [7]

      [7] M. Nasrollahzadeh, S. M. Sajadi, E. Honarmand, M. Maham, New J. Chem., 2015, 39, 4745-4752.

    8. [8]

      [8] J. Sun, X. J. Feng, Z. R. Zhao, Y. Yamamoto, M. Bao, Tetrahedron, 2014, 70, 7166-7171.

    9. [9]

      [9] Q. M. Kainz, R. Linhardt, R. N. Grass, G. Vilé, J. Pérez-Ramírez, W. J. Stark, O. Reiser, Adv. Funct. Mater., 2014, 24, 2020-2027.

    10. [10]

      [10] R. Long, Z. L. Rao, K. K. Mao, Y. Li, C. Zhang, Q. L. Liu, C. M. Wang, Z. Y. Li, X. J. Wu, Y. J. Xiong, Angew. Chem. Int. Ed., 2015, 54, 2425-2430.

    11. [11]

      [11] S. S. Gujral, S. Khatri, P. Riyal, V. Gahlot, Indo. Global. J. Pharm. Sci., 2013, 2, 351-367.

    12. [12]

      [12] V. Polshettiwar, C. Len, A. Fihri, Coord. Chem. Rev., 2009, 253, 2599-2626.

    13. [13]

      [13] J. W. Sun, Y. S. Fu, G. Y. He, X. Q. Sun, X. Wang, Appl. Catal. B, 2015, 165, 661-667.

    14. [14]

      [14] G. D. Ding, W. T. Wang, T. Jiang, B. T. Han, Green Chem., 2013, 15, 3396-3403.

    15. [15]

      [15] T. Sun, Z. Y. Zhang, J. W. Xiao, C. Chen, F. Xiao, S. Wang, Y. Q. Liu, Sci. Rep., 2013, 3, 2527.

    16. [16]

      [16] H. Y. Shen, C. Shen, C. Chen, A. M. Wang, P. F. Zhang, Catal. Sci. Technol., 2015, 5, 2065-2071.

    17. [17]

      [17] P. D. Burton, T. J. Boyle, A. K. Datye, J. Catal., 2011, 280, 145-149.

    18. [18]

      [18] J. Cookson, Platinum Metals Rev., 2012, 56(2), 83-98.

    19. [19]

      [19] V. Huc, K. Pelzer, J. Colloid Interface Sci., 2008, 318, 1-4.

    20. [20]

      [20] H. Imahori, Y. Kashiwagi, Y. Endo, T. Hanada, Y. Nishimura, I. Yamazaki, Y. Araki, O. Ito, S. Fukuzumi, Langmuir, 2004, 20, 73-81.

    21. [21]

      [21] J. D. Senra, L. F. B. Malta, M. E. H. M. da Costa, R. C. Michel, L. C. S. Aguiar, A. B. C. Simas, O. A. C. Antunes, Adv. Synth. Catal., 2009, 351, 2411-2422.

    22. [22]

      [22] B. A. Makwana, D. J. Vyas, K. D. Bhatt, V. K. Jain, Y. K. Agrawal, Spectrochim. Acta A, 2015, 134, 73-80.

    23. [23]

      [23] V. K. Jain, P. H. Kanaiya, Russ. Chem. Rev., 2011, 80, 75-102.

    24. [24]

      [24] L. Sapozhnikova, O. Altshuler, N. Malyshenko, G. Shkurenko, E. Ostapova, B. Tryasunov, H. Altshuler, Int. J. Hydrogen Energy, 2011, 36, 1259-1263.

    25. [25]

      [25] Y. Sun, Y. Yao, C. G. Yan, Y. Han, M. Shen, ACS Nano, 2010, 4, 2129-2141.

    26. [26]

      [26] M. Luostarinen, K. Salorinne, H. Lähteenmäki, H. Mansikkamäki, C. A. Schalley, M. Nissinen, K. Rissanen, J. Inclusion Phenomena Macrocyclic. Chem., 2007, 58, 71-80.

    27. [27]

      [27] D. J. Vyas, B. A. Makwana, H. S. Gupte, K. D. Bhatt, V. K. Jain, J. Nanosci. Nanotechnol., 2012, 12, 3781-3787.

    28. [28]

      [28] D. R. Mishra, S. M. Darjee, K. D. Bhatt, K. M. Modi, V. K. Jain, J. Inclusion Phenomena Macrocyclic. Chem., 2015, 82, 425-436.

    29. [29]

      [29] J. Athilakshmi, D. K. Chand, J. Chem. Sci., 2011, 123, 875-881.

    30. [30]

      [30] T. Teranishi, M. Miyake, Chem. Mater., 1998, 10, 594-600.

    31. [31]

      [31] S. Navaladian, B. Viswanathan, T. K. Varadarajan, R. P. Viswanath, Nanoscale Res. Lett., 2009, 4, 181-186.

    32. [32]

      [32] P. Puthiaraj, W. S. Ahn, Catal. Commun., 2015, 65, 91-95.

    33. [33]

      [33] E. E. Kalu, M. Daniel, M. R. Bockstaller, Int. J. Electrochem. Sci., 2012, 7, 5297-5313.

    34. [34]

      [34] Y. L. Cui, X. N. Guo, Y. Y. Wang, X. Y. Guo, Chin. J. Catal., 2015, 36, 322-327.

    35. [35]

      [35] J. L. Zhang, L. Zhao, M. P. Song, T. C. W. Mak, Y. J. Wu, J. Organometal. Chem., 2006, 691, 1301-1306.

    36. [36]

      [36] F. Alonso, I. P. Beletskaya, M. Yus, Tetrahedron, 2008, 64, 3047-3101.

    37. [37]

      [37] A. Mousa, Synthesis and Reactivity of (PCNMe) Pincer Palladium Complexes, Lund University, Lund, 2013.

    38. [38]

      [38] B. Spellberg, J. H. Powers, E. P. Brass, L. G. Miller, J. E. Edwards Jr., Clin. Infect. Diseases, 2004, 38, 1279-1286.

    39. [39]

      [39] T. Sibanda, A. I. Okoh, Afr. J. Biotechnol., 2007, 6, 2886-2896.

    40. [40]

      [40] K. Bush, M. Macielag, Curr. Opinion Chem. Biology, 2000, 4, 433-439.

    41. [41]

      [41] A. F. Elhusseiny, H. H. A. M. Hassan, Spectrochim. Acta A, 2013, 103, 232-245.

    42. [42]

      [42] S. Y. Park, S. Y. Ryu, S. Y. Kwak, in: 2010 International Conference on Biology, Environment and Chemistry, Hong Kong, 2010.

    43. [43]

      [43] S. Kang, M. Herzberg, D. F. Rodrigues, M. Elimelech, Langmuir, 2008, 24, 6409-6413.

    44. [44]

      [44] N. C. Desai, P. N. Shihora, D. L. Moradia, Indian J. Chem. B, 2007, 46, 550-553.

    45. [45]

      [45] K. Sztanke, T. Tuzimski, J. Rzymowska, K. Pasternak, M. Kandefer-Szerszeń, Eur. J. Med. Chem., 2008, 43, 404-419.

    46. [46]

      [46] V. K. Tandon, D. B. Yadav, A. K. Chaturvedi, P. K. Shukla, Bioorg. Med. Chem. Lett., 2005, 15, 3288-3291.

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    16. [16]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(1)
  • Abstract views(553)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return