Citation:
Zhun Xiao, Wangcheng Zhan, Yun Guo, Yanglong Guo, Xueqing Gong, Guanzhong Lu. The synthesis of Co-doped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen[J]. Chinese Journal of Catalysis,
;2016, 37(2): 273-280.
doi:
10.1016/S1872-2067(15)61014-2
-
Silicoaluminophosphate (SAPO) molecular sieves doped with cobalt (Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co. Each sample was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, ultraviolet-visible spectroscopy, temperature-programmed desorption of NH3 (NH3-TPD), and infrared spectrascopy of adsorbed pyridine (Py-IR). The results showed that Co was highly dispersed in the Co-SAPO-5 samples. In addition, a part of the Co content had been incorporated into the SAPO-5 framework, while the remainder existed on the surface as extra-framework Co. The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample. However, the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample. As the concentration of Co increased, the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface. NH3-TPD and Py-IR results revealed that the amount of Brønsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample. These values were also higher for samples with higher Co content. The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen. When Co was added to the SAPO-5 catalyst, the catalytic activity of the Co-SAPO-5 catalysts improved. In addition, the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased. However, with a high conversion of cyclohexane (>6.30%), the total selectivity of cyclohexanone (K) and cyclohexanol (A) decreased sharply. The K/A ratio ranged from 1.15 to 2.47. The effects of reaction conditions (i.e., reaction temperature, reaction time, initial oxygen pressure, and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured. Furthermore, the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.
-
Keywords:
- SAPO-5 molecular sieve,
- Cobalt,
- Cyclohexane,
- Selective oxidation,
- Oxygen
-
-
-
[1]
[1] J. G. Speight, Chemical and Process Design Handbook., McGraw-Hill, New York, 2002, 2,185.
-
[2]
[2] D. D. Davis. In: W. Gerhartz, Y. S. Yamamoto, F. T. Campbell, R. Pfefferkorn, J. F. Rounsaville eds. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed, Weinheim: Wiley-VCH Press, 1985, 269.
-
[3]
[3] A. Sakthivel, P. Selvam, J. Catal., 2002, 211, 134.
-
[4]
[4] J L. Tao, D. J. Tang, Q. Li, Z. L. Yu, E. Z. Min, J. Nat. Gas. Chem., 2001, 10, 295.
-
[5]
[5] R. J. Wicker, Chem. Ind., 1967, (11), 431.
-
[6]
[6] U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace, E. L. Fires, Appl. Catal. A, 2001, 211, 1.
-
[7]
[7] I. Hermans, P. Jacobs, J. Peeters, Chem. Eur. J., 2007, 13, 754.
-
[8]
[8] Y. C. Zhang, W. L. Dai, G. J. Wu, N. J. Guan, L. D. Li, Chin. J. Catal., 2014, 35: 279.
-
[9]
[9] D. Verboekend, M. Milina, J. Perez-Ramirez, Chem. Mater., 2014, 26: 4552.
-
[10]
[10] R. W. Dorner, N. J. Begue, D. Y. Petrovykh, D. R. Hardy, F. W. Williams, G. W. Mushrush, H. D. Willauer, Petrol. Sci. Technol., 2014, 32: 1375.
-
[11]
[11] S. Maurelli, G. Berlier, M. Chiesa, F. Musso, F. Cora, J. Phys. Chem. C, 2014, 118, 19879.
-
[12]
[12] S. Devika, B. Sundaravel, M. Palanichamy, V. Murugesan, J. Nanosci. Nanotechnol., 2014, 14, 3187.
-
[13]
[13] E. Gianotti, M. Manzoli, M. E. Potter, V. N. Shetti, D. Sun, J. Paterson, T. M. Mezza, A. Levy, R. Raja, Chem. Sci., 2014, 5, 1810.
-
[14]
[14] M. E. Potter, M. E. Cholerton, J. Kezina, R. Bounds, M. Carravetta, M. Manzoli, E. Gianotti, M. Lefenfeld, R. Raja, ACS Catal., 2014, 4, 4161.
-
[15]
[15] A. K. Singh, R. Yadav, V. Sudarsan, K. Kishore, S. Upadhyayula, A. Sakthivel, RSC Adv., 2014, 4, 8727.
-
[16]
[16] J. R. Chen, J. Z. Li, C. Y. Yuan, S. T. Xu, Y. X. Wei, Q. Y. Wang, Y. Zhou, J. B. Wang, M. Z. Zhang, Y. L. He, S. L. Xu, Z. M. Liu, Catal. Sci. Technol., 2014, 4, 3268.
-
[17]
[17] J. W. Liu, Z. F. Liu, G. Feng, D. J. Kong, J. Phys. Chem. C, 2014, 118, 18496.
-
[18]
[18] X. L. Wei, X. H. Lu, T. J. Zhang, X. Chu, D. Zhou, R. F. Nie, Q. H. Xia, Microporous Mesoporous Mater., 2015, 214, 80.
-
[19]
[19] L. J. Wang, C. W. Guo, S. R. Yan, X. D. Huang, Q. Z. Li, Microporous Mesoporous Mater., 2003, 64, 63.
-
[20]
[20] S. Lim, D. Ciuparu, C. Pak, F. Dobek, Y. Chen, D. Harding, L. Pfefferle, G. Haller, J. Phys. Chem. B, 2003, 107, 11048.
-
[21]
[21] A. P. Katsoulidisa, D. E. Petrakisa, G. S. Armatasa, P. N. Trikalitisc, P. J. Pomonis, Microporous Mesoporous Mater., 2006, 92, 71.
-
[22]
[22] Q. Zhao, X. P. Zhou, M. R. Ji, H. H. Ding, T. S. Jiang, C. S. Li, H. B. Yin, Appl. Surf. Sci., 2011, 257, 2436.
-
[23]
[23] A. Szegedi, M. Popova, C. Minchev, J. Mater. Sci., 2009, 44, 6710.
-
[24]
[24] M. Akcay, Appl. Catal. A, 2005, 294, 156.
-
[25]
[25] C. A. Tolman, J. D. Druliner, M. J. Nappa, N. Herron, in: C. L. Hill Ed, Activation and Functionalization of Alkanes, New York, Wiley-Interscience, 1989, 316.
-
[26]
[26] M. Conte, X. Liu, D. M. Murphy, K. Whiston, G. J. Hutchings, Phys. Chem. Chem. Phys., 2012, 14, 16279.
-
[27]
[27] I. Hermans, T. L. Nguyen, P. A. Jacobs, J. Peeters, ChemPhysChem, 2005, 6, 637.
-
[28]
[28] R. P. Houghton, C. R. Rice, Polyhedron, 1996, 15, 1893.
-
[29]
[29] D. L. Vanoppen, D. E. De Vos, M. J. Genet, P. G. Rouxhet, P. A. Jacobs, Angew. Chem. Int. Ed., 1995, 34, 560.
-
[30]
[30] X. Liu, Y. Ryabenkovs, M. Conte, Phys. Chem. Chem. Phys., 2015, 17, 715.
-
[31]
[31] B. P. C. Hereijgers, B. M. Weckhuysen, J. Catal., 2010, 270, 16.
-
[1]
-
-
-
[1]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[2]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[3]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[4]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[5]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[6]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[7]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[8]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[9]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[10]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[11]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[12]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[13]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[14]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[15]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[16]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[17]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[18]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[19]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[20]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(576)
- HTML views(74)