Citation: Zhun Xiao, Wangcheng Zhan, Yun Guo, Yanglong Guo, Xueqing Gong, Guanzhong Lu. The synthesis of Co-doped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen[J]. Chinese Journal of Catalysis, ;2016, 37(2): 273-280. doi: 10.1016/S1872-2067(15)61014-2 shu

The synthesis of Co-doped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen

  • Corresponding author: Wangcheng Zhan,  Guanzhong Lu, 
  • Received Date: 25 August 2015
    Available Online: 10 November 2015

    Fund Project: 国家重点基础研究发展计划(2010CB732300) (2010CB732300) 国家自然科学基金(21103048). (21103048)

  • Silicoaluminophosphate (SAPO) molecular sieves doped with cobalt (Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co. Each sample was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, ultraviolet-visible spectroscopy, temperature-programmed desorption of NH3 (NH3-TPD), and infrared spectrascopy of adsorbed pyridine (Py-IR). The results showed that Co was highly dispersed in the Co-SAPO-5 samples. In addition, a part of the Co content had been incorporated into the SAPO-5 framework, while the remainder existed on the surface as extra-framework Co. The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample. However, the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample. As the concentration of Co increased, the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface. NH3-TPD and Py-IR results revealed that the amount of Brønsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample. These values were also higher for samples with higher Co content. The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen. When Co was added to the SAPO-5 catalyst, the catalytic activity of the Co-SAPO-5 catalysts improved. In addition, the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased. However, with a high conversion of cyclohexane (>6.30%), the total selectivity of cyclohexanone (K) and cyclohexanol (A) decreased sharply. The K/A ratio ranged from 1.15 to 2.47. The effects of reaction conditions (i.e., reaction temperature, reaction time, initial oxygen pressure, and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured. Furthermore, the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.
  • 加载中
    1. [1]

      [1] J. G. Speight, Chemical and Process Design Handbook., McGraw-Hill, New York, 2002, 2,185.

    2. [2]

      [2] D. D. Davis. In: W. Gerhartz, Y. S. Yamamoto, F. T. Campbell, R. Pfefferkorn, J. F. Rounsaville eds. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed, Weinheim: Wiley-VCH Press, 1985, 269.

    3. [3]

      [3] A. Sakthivel, P. Selvam, J. Catal., 2002, 211, 134.

    4. [4]

      [4] J L. Tao, D. J. Tang, Q. Li, Z. L. Yu, E. Z. Min, J. Nat. Gas. Chem., 2001, 10, 295.

    5. [5]

      [5] R. J. Wicker, Chem. Ind., 1967, (11), 431.

    6. [6]

      [6] U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace, E. L. Fires, Appl. Catal. A, 2001, 211, 1.

    7. [7]

      [7] I. Hermans, P. Jacobs, J. Peeters, Chem. Eur. J., 2007, 13, 754.

    8. [8]

      [8] Y. C. Zhang, W. L. Dai, G. J. Wu, N. J. Guan, L. D. Li, Chin. J. Catal., 2014, 35: 279.

    9. [9]

      [9] D. Verboekend, M. Milina, J. Perez-Ramirez, Chem. Mater., 2014, 26: 4552.

    10. [10]

      [10] R. W. Dorner, N. J. Begue, D. Y. Petrovykh, D. R. Hardy, F. W. Williams, G. W. Mushrush, H. D. Willauer, Petrol. Sci. Technol., 2014, 32: 1375.

    11. [11]

      [11] S. Maurelli, G. Berlier, M. Chiesa, F. Musso, F. Cora, J. Phys. Chem. C, 2014, 118, 19879.

    12. [12]

      [12] S. Devika, B. Sundaravel, M. Palanichamy, V. Murugesan, J. Nanosci. Nanotechnol., 2014, 14, 3187.

    13. [13]

      [13] E. Gianotti, M. Manzoli, M. E. Potter, V. N. Shetti, D. Sun, J. Paterson, T. M. Mezza, A. Levy, R. Raja, Chem. Sci., 2014, 5, 1810.

    14. [14]

      [14] M. E. Potter, M. E. Cholerton, J. Kezina, R. Bounds, M. Carravetta, M. Manzoli, E. Gianotti, M. Lefenfeld, R. Raja, ACS Catal., 2014, 4, 4161.

    15. [15]

      [15] A. K. Singh, R. Yadav, V. Sudarsan, K. Kishore, S. Upadhyayula, A. Sakthivel, RSC Adv., 2014, 4, 8727.

    16. [16]

      [16] J. R. Chen, J. Z. Li, C. Y. Yuan, S. T. Xu, Y. X. Wei, Q. Y. Wang, Y. Zhou, J. B. Wang, M. Z. Zhang, Y. L. He, S. L. Xu, Z. M. Liu, Catal. Sci. Technol., 2014, 4, 3268.

    17. [17]

      [17] J. W. Liu, Z. F. Liu, G. Feng, D. J. Kong, J. Phys. Chem. C, 2014, 118, 18496.

    18. [18]

      [18] X. L. Wei, X. H. Lu, T. J. Zhang, X. Chu, D. Zhou, R. F. Nie, Q. H. Xia, Microporous Mesoporous Mater., 2015, 214, 80.

    19. [19]

      [19] L. J. Wang, C. W. Guo, S. R. Yan, X. D. Huang, Q. Z. Li, Microporous Mesoporous Mater., 2003, 64, 63.

    20. [20]

      [20] S. Lim, D. Ciuparu, C. Pak, F. Dobek, Y. Chen, D. Harding, L. Pfefferle, G. Haller, J. Phys. Chem. B, 2003, 107, 11048.

    21. [21]

      [21] A. P. Katsoulidisa, D. E. Petrakisa, G. S. Armatasa, P. N. Trikalitisc, P. J. Pomonis, Microporous Mesoporous Mater., 2006, 92, 71.

    22. [22]

      [22] Q. Zhao, X. P. Zhou, M. R. Ji, H. H. Ding, T. S. Jiang, C. S. Li, H. B. Yin, Appl. Surf. Sci., 2011, 257, 2436.

    23. [23]

      [23] A. Szegedi, M. Popova, C. Minchev, J. Mater. Sci., 2009, 44, 6710.

    24. [24]

      [24] M. Akcay, Appl. Catal. A, 2005, 294, 156.

    25. [25]

      [25] C. A. Tolman, J. D. Druliner, M. J. Nappa, N. Herron, in: C. L. Hill Ed, Activation and Functionalization of Alkanes, New York, Wiley-Interscience, 1989, 316.

    26. [26]

      [26] M. Conte, X. Liu, D. M. Murphy, K. Whiston, G. J. Hutchings, Phys. Chem. Chem. Phys., 2012, 14, 16279.

    27. [27]

      [27] I. Hermans, T. L. Nguyen, P. A. Jacobs, J. Peeters, ChemPhysChem, 2005, 6, 637.

    28. [28]

      [28] R. P. Houghton, C. R. Rice, Polyhedron, 1996, 15, 1893.

    29. [29]

      [29] D. L. Vanoppen, D. E. De Vos, M. J. Genet, P. G. Rouxhet, P. A. Jacobs, Angew. Chem. Int. Ed., 1995, 34, 560.

    30. [30]

      [30] X. Liu, Y. Ryabenkovs, M. Conte, Phys. Chem. Chem. Phys., 2015, 17, 715.

    31. [31]

      [31] B. P. C. Hereijgers, B. M. Weckhuysen, J. Catal., 2010, 270, 16.

  • 加载中
    1. [1]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(0)
  • Abstract views(576)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return