Citation: Xiaoqiang Du, Jingwei Huang, Yingying Feng, Yong Ding. Flower-like 3D CuO microsphere acting as photocatalytic water oxidation catalyst[J]. Chinese Journal of Catalysis, ;2016, 37(1): 123-134. doi: 10.1016/S1872-2067(15)61012-9 shu

Flower-like 3D CuO microsphere acting as photocatalytic water oxidation catalyst

  • Corresponding author: Yong Ding, 
  • Received Date: 29 October 2015
    Available Online: 7 November 2015

    Fund Project: 国家自然科学基金(21173105, 21172098). (21173105, 21172098)

  • Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light. The structure of the CuO microspheres was characterized by scanning electron microscopy, transmission electron microscopy, infrared, powder X-ray diffraction, electron dispersive spectroscopy, Raman and X-ray photoelectron spectroscopy (XPS). This is the first time that a copper oxide was demonstrated as a photocatalytic water oxidation catalyst under near neutral conditions. The catalytic activity of CuO microspheres in borate buffer shows the best performance with O2 yield of 11.5%. No change in the surface properties of CuO before and after the photocatalytic reaction was seen by XPS, which showed good catalyst stability. A photocatalytic water oxidation reaction mechanism catalyzed by the CuO microspheres was proposed.
  • 加载中
    1. [1]

      [1] N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA, 2006, 103, 15729-15735.

    2. [2]

      [2] X. Q. Du, J. L. Zhao, J. Q. Mi, Y. Ding, P. P. Zhou, B. C. Ma, J. W. Zhao, J. Song, Nano Energy, 2015, 16, 247-255.

    3. [3]

      [3] F. Y. Wen, C. Li, Acc. Chem. Res., 2013, 46, 2355-2364.

    4. [4]

      [4] D. J. Martin, G. G. Liu, S. J. A. Moniz, Y. P. Bi, A. M. Beale, J. H. Ye, J. W. Tang, Chem. Soc. Rev., 2015, 44, 7808-7828.

    5. [5]

      [5] D. J. Martin, P. J. T. Reardon, S. J. A. Moniz, J. W. Tang, J. Am. Chem. Soc., 2014, 136, 12568-12571.

    6. [6]

      [6] C. W. Cady, R. H. Crabtree, G. W. Brudvig, Coord. Chem. Rev., 2008, 252, 444-455.

    7. [7]

      [7] Z. Liu, Y. Gao, Z. Yu, M. Zhang, J. H. Liu, Chin. J. Catal., 2015, 36, 1742-1749.

    8. [8]

      [8] Y. Jiang, F. Li, F. Huang, B. B. Zhang, L. C. Sun, Chin. J. Catal., 2013, 34, 1489-1495.

    9. [9]

      [9] X. B. Han, Z. M. Zhang, T. Zhang, Y. G. Li, W. B. Lin, W. S. You, Z. M. Su, E. B. Wang, J. Am. Chem. Soc., 2014, 136, 5359-5366.

    10. [10]

      [10] D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y. M. Lee, W. Nam, S. Fukuzumi, Energy Environ. Sci., 2012, 5, 7606-7616.

    11. [11]

      [11] Z. Q. Huang, Z. Luo, Y. V. Geletii, J. W. Vickers, Q. S. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill, T. Q. Lian, J. Am. Chem. Soc., 2011, 133, 2068-2071.

    12. [12]

      [12] F. Y. Song, Y. Ding, B. C. Ma, C. M. Wang, Q. Wang, X. Q. Du, S. Fu, J. Song, Energy Environ. Sci., 2013, 6, 1170-1184.

    13. [13]

      [13] R. Xiang, Y. Ding, J. W. Zhao, Chem. Asian J., 2014, 9, 3228-3273.

    14. [14]

      [14] H. J. Lv, Y. V. Geletii, C. C. Zhao, J. W. Vickers, G. B. Zhu, Z. Luo, J. Song, T. Q. Lian, D. G. Musaev, C. L. Hill, Chem. Soc. Rev., 2012, 41, 7572-7589.

    15. [15]

      [15] S. Fu, Y. D. Liu, Y. Ding, X. Q. Du, F. Y. Song, R. Xiang, B. C. Ma, Chem. Commun., 2014, 50, 2167-2169.

    16. [16]

      [16] F. Evangelisti, R. Guttinger, R. More, S. Luber, G. R. Patzke, J. Am. Chem. Soc., 2013, 135, 18734-18737.

    17. [17]

      [17] C. F. Leung, S. M. Ng, C. C. Ko, W. L. Man, J. S. Wu, L. J. Chen, T. C. Lau, Energy Environ. Sci., 2012, 5, 7903-7907.

    18. [18]

      [18] Y. K. Zhao, Y. D. Liu, X. Q. Du, R. X. Han, Y. Ding, J. Mater. Chem. A, 2014, 2, 19308-19314.

    19. [19]

      [19] Y. Yamada, K. Yano, D. C. Hong, S. Fukuzumi, Phys. Chem. Chem. Phys., 2012, 14, 5753-5760.

    20. [20]

      [20] F. Jiao, H. Frei, Angew. Chem. Int. Ed., 2009, 48, 1841-1844.

    21. [21]

      [21] A. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeisser, P. Strasser, M. Driess, J. Am. Chem. Soc., 2014, 136, 17530-17536.

    22. [22]

      [22] G. S. Hutchings, Y. Zhang, J. Li, B. T. Yonemoto, X. G. Zhou, K. K. Zhu, F. Jiao, J. Am. Chem. Soc., 2015, 137, 4223-4229.

    23. [23]

      [23] J. Zhao, Y. C. Zou, X. X. Zou, T. Y. Bai, Y. P. Liu, R. Q. Gao, D. J. Wang, G. D. Li, Nanoscale, 2014, 6, 7255-7262.

    24. [24]

      [24] A. M. Ullman, Y. Liu, M. Huynh, D. K. Bediako, H. Wang, B. L. Anderson, D. C. Powers, J. J. Breen, H. D. Abruna, D. G. Nocera, J. Am. Chem. Soc., 2014, 136, 17681-17688.

    25. [25]

      [25] F. Jiao, H. Frei, Energy Environ. Sci., 2010, 3, 1018-1027.

    26. [26]

      [26] J. Wei, Y. Liu, Y. Ding, C. Luo, X. Q. Du, J. Q. Lin, Chem. Commun., 2014, 50, 11938-11941.

    27. [27]

      [27] R. Al-Oweini, A. Sartorel, B. S. Bassil, M. Natali, S. Berardi, F. Scandola, U. Kortz, M. Bonchio, Angew. Chem. Int. Ed., 2014, 53, 11182-11185.

    28. [28]

      [28] G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia, G. F. Swiegers, Acc. Chem. Res., 2009, 42, 1935-1943.

    29. [29]

      [29] W. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am. Chem. Soc., 2010, 132, 10990-10991.

    30. [30]

      [30] J. L. Fillol, Z. Codolà, I. Garcia Bosch, L. Gómez, J. J. Pla, M. Costas, Nat. Chem., 2011, 3, 807-813.

    31. [31]

      [31] X. Q. Du, Y. Ding, F. Y. Song, B. C. Ma, J. L. Zhao, J. Song, Chem. Commun., 2015, 51, 13925-13928.

    32. [32]

      [32] G. Chen, L. J. Chen, S. L. Ng, W. M. Man, T. C. Lau, Angew. Chem. Int. Ed., 2013, 52, 1789-1791.

    33. [33]

      [33] S. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem., 2012, 4, 498-502.

    34. [34]

      [34] J. E. Yourey, K. J. Pyper, J. B. Kurtz, B. M. Bartlett, J. Phys. Chem. C, 2013, 117, 8708-8718.

    35. [35]

      [35] Z. F. Chen, T. J. Meyer, Angew. Chem. Int. Ed., 2013, 52, 700-703.

    36. [36]

      [36] F. S. Yu, F. Li, B. B. Zhang, H. Li, L. C. Sun, ACS Catal., 2015, 5, 627-630.

    37. [37]

      [37] T. Zhang, C. Wang, S. B. Liu, J. L. Wang, W. B. Lin, J. Am. Chem. Soc., 2014, 136, 273-281.

    38. [38]

      [38] X. Du, Y. Ding, R. Xiang, X. Xiang, Phys. Chem. Chem. Phys., 2015, 17, 10648-10655.

    39. [39]

      [39] M. P. Santoni, G. La Ganga, V. Mollica Nardo, M. Natali, F. Puntoriero, F. Scandola, S. Campagna, J. Am. Chem. Soc., 2014, 136, 8189-8192.

    40. [40]

      [40] X. Q. Du, J. Wei, J. L. Zhao, R. X. Han, Y. Ding, Chem. Asian J., 2014, 9, 2745-2750.

    41. [41]

      [41] G. Chen, L. J. Chen, S. M. Ng, T. C. Lau, ChemSusChem, 2014, 7, 127-134.

    42. [42]

      [42] D. C. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi, J. Am. Chem. Soc., 2012, 134, 19572-19575.

    43. [43]

      [43] M. Zhang, M. T. Zhang, C. Hou, Z. F. Ke, T. B. Lu, Angew. Chem. Int. Ed., 2014, 53, 13042-13048.

    44. [44]

      [44] G. B. Zhu, E. N. Glass, C. C. Zhao, H. J. Lv, J. W. Vickers, Y. V. Geletii, D. G. Musaev, J. Song, C. L. Hill, Dalton Trans., 2012, 41, 13043- 13049.

    45. [45]

      [45] X. B. Han, Y. G. Li, Z. M. Zhang, H. Q. Tan, Y. Lu, E. B. Wang, J. Am. Chem. Soc., 2015, 137, 5486-5493.

    46. [46]

      [46] W. H. He, Y. Yang, L. Wang, J. J. Yang, X. Xiang, D. P. Yan, F. Li, ChemSusChem, 2015, 8, 1568-1576.

    47. [47]

      [47] Z. F. Chen, T. J. Meyer, Angew. Chem. Int. Ed., 2013, 52, 700-703.

    48. [48]

      [48] S. F. Zheng, J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan, Y. G. Guo, Chem. Mater., 2008, 20, 3617-3622.

    49. [49]

      [49] C. Creutz, N. Sutin, Proc. Natl. Acad. Sci. USA, 1975, 72, 2858-2862.

    50. [50]

      [50] P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz, N. Sutin, J. Am. Chem. Soc., 1984, 106, 4772-4783.

    51. [51]

      [51] L. Kundakovic, M. Flytzani Stephanopoulos, Appl. Catal. A, 1998, 171, 13-29.

    52. [52]

      [52] M. Zhang, M. de Respinis, H. Frei, Nat. Chem., 2014, 6, 362-367.

    53. [53]

      [53] M. Taki, S. Itoh, S. Fukuzumi, J. Am. Chem. Soc., 2001, 123, 6203-6204.

    54. [54]

      [54] S. Mahapatra, S. Kaderli, A. Llobet, Y. M. Neuhold, T. Palanche, J. A. Halfen, V. G. Young, T. A. Kaden, L. Que, A. D. Zuberbuhler, W. B. Tolman, Inorg. Chem., 1997, 36, 6343-6356.

    55. [55]

      [55] P. Kang, E. Bobyr, J. Dustman, K. O. Hodgson, B. Hedman, E. I. Solomon, T. D. Stack, Inorg. Chem., 2010, 49, 11030-11038.

    56. [56]

      [56] L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev., 2004, 104, 1013-1046.

    57. [57]

      [57] K. Kwapien, S. Piccinin, S. Fabris, J. Phys. Chem. Lett., 2013, 4, 4223-4230.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(2)
  • Abstract views(395)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return