Citation: Solomon Legese Hailu, Balachandran Unni Nair, Mesfin Redi-Abshiro, Isabel Diaz, Rathinam Aravindhan, Merid Tessema. Oxidation of 4-chloro-3-methylphenol using zeolite Y-encapsulated iron(III)-, nickel(II)-, and copper(II)-N,N'-disalicylidene- 1,2-phenylenediamine complexes[J]. Chinese Journal of Catalysis, ;2016, 37(1): 135-145. doi: 10.1016/S1872-2067(15)61010-5 shu

Oxidation of 4-chloro-3-methylphenol using zeolite Y-encapsulated iron(III)-, nickel(II)-, and copper(II)-N,N'-disalicylidene- 1,2-phenylenediamine complexes

  • Corresponding author: Balachandran Unni Nair, 
  • Received Date: 11 August 2015
    Available Online: 6 November 2015

  • The degradation of 4-chloro-3-methylphenol (PCMC) using zeolite-encapsulated iron(III), nickel(II), and copper(II) complexes of N,N'-disalicylidene-1,2-phenylenediamine as catalysts, in a heterogeneous Fenton-like advanced oxidation process, was studied. The physicochemical properties of the catalysts were determined using powder X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller surface area analysis, Fourier-transform infrared spectroscopy, elemental analysis, and scanning electron microscopy. The effects of four factors, namely initial H2O2 concentration, catalyst dosage, temperature, and pH, on the degradation of a model organic pollutant were determined. The results show that at low acidic pH, almost complete removal of PCMC was achieved with the iron(III), nickel(II), and copper(II) catalysts after 120 min under the optimum reaction conditions: catalyst dosage 0.1 g, H2O2 concentration 75 mmol/L, initial PCMC concentration 0.35 mmol/L, and 50 ℃. The reusability of the prepared catalysts in PCMC degradation was also studied and a possible catalyst deactivation mechanism is proposed. The possible intermediate products, degradation pathway, and kinetics of PCMC oxidation were also studied.
  • 加载中
    1. [1]

      [1] L. F. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando, J. Hazard. Mater., 2009, 162, 588.

    2. [2]

      [2] J. M. Britto, S. B. de Oliveira, D. Rabelo, M. do Carmo Rangel, Catal. Today, 2008, 133-135, 582.

    3. [3]

      [3] Z. Lin, H. Chen, Y. Zhou, N. Ogawa, J. M. Lin, J. Environ. Sci., 2012, 24, 550.

    4. [4]

      [4] D. Tabet, M. Saidi, M. Houari, P. Pichat, H. Khalaf, J. Environ. Manage., 2006, 80, 342.

    5. [5]

      [5] L. J. Xu, J. L. Wang, J. Hazard. Mater., 2011, 186, 256.

    6. [6]

      [6] J. Kronholm, H. Metsälä, K. Hartonen, M. L. Riekkola, Environ. Sci. Technol., 2001, 35, 3247.

    7. [7]

      [7] J. Kronholm, S. Huhtala, H. Haario, M. L. Riekkola, Adv. Environ. Res., 2002, 6, 199.

    8. [8]

      [8] A. Y. Chen, X. D. Ma, H. W. Sun, J. Hazard. Mater., 2008, 156, 568.

    9. [9]

      [9] M. Punzi, B. Mattiasson, M. Jonstrup, J. Photochem. Photobiol. A, 2012, 248, 30.

    10. [10]

      [10] H. Kušić, N. Koprivanac, I. Selanec, Chemosphere, 2006, 65, 65.

    11. [11]

      [11] F. C. C. Moura, M. H. Araujo, R. C. C. Costa, J. D. Fabris, J. D. Ardisson, W. A. A. Macedo, R. M. Lago, Chemosphere, 2005, 60, 1118.

    12. [12]

      [12] .J H. Deng, J. Y. Jiang, Y. Y. Zhang, X. P. Lin, C. M. Du, Y. Xiong, Appl. Catal. B, 2008, 84, 468.

    13. [13]

      [13] G. Viola, R. Mckinnom, V. Koval, A. Adomkericius, S. Dunn, H. Yan, J. Phys. Chem. C, 2014, 118, 8564.

    14. [14]

      [14] K. O. Xavier, J. Chacko, Mohammed K. K. Yusuff, Appl. Catal. A, 2004, 258, 251.

    15. [15]

      [15] K. K. Bania, G. V. Karunakar, K. Goutham, R. C. Deka, Inorg. Chem., 2013, 52, 8017.

    16. [16]

      [16] A. Choudhary, B. Das, S. Ray, Dalton Trans., 2015, 44, 3753.

    17. [17]

      [17] F. Bedioui, E. de Boysson, J. Devynck, K. J. Balkus, J. Chem. Soc., Faraday Trans., 1991, 87, 3831.

    18. [18]

      [18] K. K. Bania, D. Bharali, B. Viswanathan, R. C. Deka, Inorg. Chem., 2012, 51, 1657.

    19. [19]

      [19] T. M. Salama, A. H. Ahmed, Z. M. El-Bahy, Microporous Mesoporous Mater., 2006, 89, 251.

    20. [20]

      [20] L. Bounab, O. Iglesias, E. Gonzalez-Romero, M. Pazos, M. Angeles Sanroman, RSC Adv., 2005, 5, 31049.

    21. [21]

      [21] A. Lopez, G. Mascolo, A. Detomaso, G. Lovecchio, G. Villani, Chemosphere, 2005, 59, 397.

    22. [22]

      [22] R. Aravindhan, N. N. Fathima, J. R. Rao, B. U. Nair, J. Hazard. Mater., 2006, 138, 152.

    23. [23]

      [23] M. Silva, C. Freire, B. de Castro, J. L. Figueiredo, J. Mol. Catal. A, 2006, 258, 327.

    24. [24]

      [24] W. H. Quayle, J. H. Lunsford, Inorg. Chem., 1982, 21, 97.

    25. [25]

      [25] M. Salavati-Niasari, Z. Salimi, M. Bazarganipour, F. Davar, Inorg. Chim. Acta, 2009, 362, 3715.

    26. [26]

      [26] X. L. Hu, K. Meyer, Inorg. Chim. Acta, 2002, 337, 53.

    27. [27]

      [27] C. K. Modi, P. M. Trivedi, Adv. Mater. Lett., 2012, 3, 149.

    28. [28]

      [28] B. Dutta, S. Jana, R. Bera, P. K. Saha, S. Koner, Appl. Catal. A, 2007, 318, 89.

    29. [29]

      [29] G. Ramanjaneya Reddy, S. Balasubramanian, K. Chennakesavulu, J. Mater. Chem. A, 2014, 2, 15598.

    30. [30]

      [30] S. Brunauer, L. S. Deming, E. Teller, J. Am. Chem. Soc., 1940, 62, 1723.

    31. [31]

      [31] Y. Yang, H. Ding, S. Hao, Y. Zhang, Q. B. Kan, Appl. Organometal. Chem., 2011, 25, 262.

    32. [32]

      [32] K. K. Bania, R. C. Deka, J. Phys. Chem. C, 2012, 116, 14295.

    33. [33]

      [33] M. Salavati-Niasari, J. Mol. Catal. A, 2006, 245, 192.

    34. [34]

      [34] A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng., 2014, 2, 557.

    35. [35]

      [35] J. X. Chen, L. Z. Zhu, Catal. Today, 2007, 126, 463.

    36. [36]

      [36] O. B. Ayodele, J. K. Lim, B. H. Hameed, Appl. Catal. A, 2012, 413-414, 301.

    37. [37]

      [37] H. Y. Xu, M. Prasad, Y. Liu, J. Hazard. Mater., 2009, 165, 1186.

    38. [38]

      [38] J. Guo, M. Al-Dahhan, Appl. Catal. A, 2006, 299, 175.

    39. [39]

      [39] J. H. Ramirez, C. A. Costa, L. M. Madeira, G. Mata, M. A. Vicente, M. L. Rojas-Cervantes, A. J. López-Peinado, R. M. Martín-Aranda, Appl. Catal. B, 2007, 71, 44.

    40. [40]

      [40] J. H. Ramirez, F. M. Duarte, F. G. Martins, C. A. Costa, L. M. Madeira, J. Chem. Eng., 2009, 148, 394.

    41. [41]

      [41] S. L. Hailu, B. U. Nair, M. Redi-Abshiro, R. Aravindhan, I. Diaz, M. Tessema, J. Porous Mater., 2015, 22, 1363.

    42. [42]

      [42] S. L. Hailu, B. U. Nair, M. Redi-Abshiro, R. Aravindhan, I. Diaz, M. Tessema, RSC Adv., 2015, 5, 88636.

  • 加载中
    1. [1]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Xiao-Qi Xu Yapei Wang . Practice of Cultivating Multi-Disciplinary Talents with Comprehensive Skills through Demand-Driven, Individualized Education, and Humanities and Science Integration. University Chemistry, 2024, 39(6): 90-97. doi: 10.3866/PKU.DXHX202311049

    11. [11]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    20. [20]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

Metrics
  • PDF Downloads(0)
  • Abstract views(411)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return