Citation:
Mengsi Zhao, Juanjuan Shi, Zhaoyin Hou. Selective hydrogenation of phenol to cyclohexanone in water over Pd catalysts supported on Amberlyst-45[J]. Chinese Journal of Catalysis,
;2016, 37(2): 234-239.
doi:
10.1016/S1872-2067(15)60997-4
-
A series of Pd catalysts were prepared on different supports (Fe2O3, SiO2, ZnO, MgO, Al2O3, carbon, and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water. The Amberlyst-45 supported Pd catalyst (Pd/A-45) was highly active and selective under mild conditions (40-100℃, 0.2-1 MPa), giving a selectivity of cyclohexanone higher than 89% even at complete conversion of phenol. Experiments with different Pd loadings (or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction, and Pd particles of 12-14 nm on Amberlyst-45 gave better selectivity and stability.
-
Keywords:
- Phenol,
- Hydrogenation,
- Cyclohexanone,
- Palladium,
- Amberlyst-45 resin,
- Supported catalyst
-
-
-
[1]
[1] H. Z. Liu, T. Jiang, B. X. Han, S. G. Liang, Y. X. Zhou, Science, 2009, 326, 1250.
-
[2]
[2] Y. Wang, J. S. Zhang, X. C. Wang, M. Antonietti, H. R. Li, Angew. Chem. Int. Ed., 2010, 49, 3356.
-
[3]
[3] U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace, E. L. Fires, Appl. Catal. A, 2001, 211, 1.
-
[4]
[4] S. G. Shore, E. Ding, C. Park, M. A. Keane, J. Mol. Catal. A, 2004, 212, 291.
-
[5]
[5] Y. Li, X. Xu, P. F. Zhang, Y. T. Gong, H. R. Li, Y. Wang, RSC Adv., 2013, 3, 10973.
-
[6]
[6] H. J. Wang, F. Y. Zhao, S. I. Fujita, M. Arai, Catal. Commun., 2008, 9, 362.
-
[7]
[7] N. Mahata, V. Vishwanathan, J. Catal., 2000, 196, 262.
-
[8]
[8] G. Neri, A. M. Visco, A. Donato, C. Milone, M. Malentacchi, G. Gubitosa, Appl. Catal. A, 1994, 110, 49.
-
[9]
[9] S. Scire, S. Minico, C. Crisafulli, Appl. Catal. A, 2002, 235, 21.
-
[10]
[10] J. R. Gonzalez-Velasco, M. P. Gonzalez-Marcos, S. Arnaiz, J. I. Gutierrez-Ortiz, M. A. Gutierrez-Ortiz, Ind. Eng. Chem. Res., 1995, 34, 1031.
-
[11]
[11] L. Calvo, M. A. Gilarranz, J. A. Casas, A. F. Mohedano, J. J. Rodrıguez, Appl. Catal. B, 2006, 67, 68.
-
[12]
[12] J. F. Zhu, G. H. Tao, H. Y. Liu, L. He, Q. H. Sun, H. C. Liu, Green Chem., 2014, 16, 2664.
-
[13]
[13] S. T. Srinivas, L. Jhansi Lakshmi, P. Kanta Rao, Appl. Catal. A, 1994, 110, 167.
-
[14]
[14] A. K. Talukdar, K. G. Bhattacharyya, S. Sivasanker, Appl. Catal. A, 1993, 96, 229.
-
[15]
[15] T. T. Bovkun, Y. Sasson, J. Blum, J. Mol. Catal. A, 2005, 242, 68.
-
[16]
[16] E. J. Shin, M. A. Keane, Ind. Eng. Chem. Res., 2000, 39, 883.
-
[17]
[17] G. Yuan, J. Llanos Lopez, C. Louis, L. Delannoy, M. A. Keane, Catal. Commun., 2005, 6, 555.
-
[18]
[18] H. Li, J. Liu, S. H. Xie, M. H. Qiao, W. L. Dai, Y. F. Lu, H. X. Li, Adv. Funct. Mater., 2008, 18, 3235.
-
[19]
[19] P. Makowski, R. Demir Cakan, M. Antonietti, F. Goettmann, M. M. Titirici, Chem. Commun., 2008, 999.
-
[20]
[20] J. Morales, R. Hutcheson, C. Noradoun, I. F. Cheng, Ind. Eng. Chem. Res., 2002, 41, 3071.
-
[21]
[21] S. Velu, M. P. Kapoor, S. Inagaki, K. Suzuki, Appl. Catal. A, 2003, 245, 317.
-
[22]
[22] J. Y. He, C. Zhao, J. A. Lercher, J. Catal.,2014, 309, 362.
-
[23]
[23] H. L. Liu, Y. W. Li, R. Luque, H. F. Jiang, Adv. Synth. Catal., 2011, 353, 3107.
-
[24]
[24] D. M. Zhang, Y. J. Guan, E. J. M. Hensen, L. Chen, Y. M. Wang, Catal. Commun., 2013, 41, 47.
-
[25]
[25] L. Cheng, Q. G. Dai, H. Li, X. Y. Wang, Catal. Commun., 2014, 57, 23.
-
[26]
[26] H. Yoshida, S. Narisawa, S. I. Fujita, M. Arai, J. Mol. Catal. A, 2013, 379, 80.
-
[27]
[27] Y. Wang, J. Yao, H. R. Li, D. S. Su, M. Antonietti, J. Am. Chem. Soc., 2011, 133, 2362.
-
[28]
[28] S. Watanabe, V. Arunajatesan, Top. Catal., 2010, 53, 1150.
-
[29]
[29] W. C. Du, S. X. Xia, R. F. Nie, Z. Y. Hou, Ind. Eng. Chem. Res., 2014, 53, 4589.
-
[30]
[30] D. D. Zhang, D. L. Wei, Q. Li, X. Ge, X. F. Guo, W. P Ding, Z. K. Xie, Sci. Rep., 2014, 4, 4021.
-
[31]
[31] K. R. Priolkar, P. Bera, P. R. Sarode, M. S. Hegde, S. Emura, R. Kumashiro, N. P. Lalla, Chem. Mater., 2002, 14, 2120.
-
[32]
[32] V. Z. Radkevich, T. L. Senko, K. Wilson, L. M. Grishenko, A. N. Zaderko, V. Y. Diyuk, Appl. Catal. A, 2008, 335, 241.
-
[33]
[33] C. V. Rode, U. D. Joshi, O. Sato, M. Shirai, Chem. Commun., 2003, 1960.
-
[34]
[34] S. Kale, S. B. Umbarkar, M. K. Dongare, R. Eckelt, U. Armbruster, A. Martin, Appl. Catal. A, 2015, 490, 10.
-
[35]
[35] H. Sakurai, K. Koga, M. Kiuchi, Catal. Today, 2015, 251, 96.
-
[1]
-
-
-
[1]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[2]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
-
[5]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[6]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[7]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[8]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[9]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[10]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[11]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[12]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[13]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[14]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[17]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[18]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[19]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[20]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(632)
- HTML views(102)