Citation: Mengsi Zhao, Juanjuan Shi, Zhaoyin Hou. Selective hydrogenation of phenol to cyclohexanone in water over Pd catalysts supported on Amberlyst-45[J]. Chinese Journal of Catalysis, ;2016, 37(2): 234-239. doi: 10.1016/S1872-2067(15)60997-4 shu

Selective hydrogenation of phenol to cyclohexanone in water over Pd catalysts supported on Amberlyst-45

  • Corresponding author: Zhaoyin Hou, 
  • Received Date: 3 September 2015
    Available Online: 29 September 2015

    Fund Project: 国家自然科学基金(21473155, 21273198, 21073159) (21473155, 21273198, 21073159) 浙江省自然科学基金(LZ12B03001). (LZ12B03001)

  • A series of Pd catalysts were prepared on different supports (Fe2O3, SiO2, ZnO, MgO, Al2O3, carbon, and Amberlyst-45) and used in the selective hydrogenation of phenol to cyclohexanone in water. The Amberlyst-45 supported Pd catalyst (Pd/A-45) was highly active and selective under mild conditions (40-100℃, 0.2-1 MPa), giving a selectivity of cyclohexanone higher than 89% even at complete conversion of phenol. Experiments with different Pd loadings (or different particle sizes) confirmed that the formation of cyclohexanone was a structure sensitive reaction, and Pd particles of 12-14 nm on Amberlyst-45 gave better selectivity and stability.
  • 加载中
    1. [1]

      [1] H. Z. Liu, T. Jiang, B. X. Han, S. G. Liang, Y. X. Zhou, Science, 2009, 326, 1250.

    2. [2]

      [2] Y. Wang, J. S. Zhang, X. C. Wang, M. Antonietti, H. R. Li, Angew. Chem. Int. Ed., 2010, 49, 3356.

    3. [3]

      [3] U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace, E. L. Fires, Appl. Catal. A, 2001, 211, 1.

    4. [4]

      [4] S. G. Shore, E. Ding, C. Park, M. A. Keane, J. Mol. Catal. A, 2004, 212, 291.

    5. [5]

      [5] Y. Li, X. Xu, P. F. Zhang, Y. T. Gong, H. R. Li, Y. Wang, RSC Adv., 2013, 3, 10973.

    6. [6]

      [6] H. J. Wang, F. Y. Zhao, S. I. Fujita, M. Arai, Catal. Commun., 2008, 9, 362.

    7. [7]

      [7] N. Mahata, V. Vishwanathan, J. Catal., 2000, 196, 262.

    8. [8]

      [8] G. Neri, A. M. Visco, A. Donato, C. Milone, M. Malentacchi, G. Gubitosa, Appl. Catal. A, 1994, 110, 49.

    9. [9]

      [9] S. Scire, S. Minico, C. Crisafulli, Appl. Catal. A, 2002, 235, 21.

    10. [10]

      [10] J. R. Gonzalez-Velasco, M. P. Gonzalez-Marcos, S. Arnaiz, J. I. Gutierrez-Ortiz, M. A. Gutierrez-Ortiz, Ind. Eng. Chem. Res., 1995, 34, 1031.

    11. [11]

      [11] L. Calvo, M. A. Gilarranz, J. A. Casas, A. F. Mohedano, J. J. Rodrıguez, Appl. Catal. B, 2006, 67, 68.

    12. [12]

      [12] J. F. Zhu, G. H. Tao, H. Y. Liu, L. He, Q. H. Sun, H. C. Liu, Green Chem., 2014, 16, 2664.

    13. [13]

      [13] S. T. Srinivas, L. Jhansi Lakshmi, P. Kanta Rao, Appl. Catal. A, 1994, 110, 167.

    14. [14]

      [14] A. K. Talukdar, K. G. Bhattacharyya, S. Sivasanker, Appl. Catal. A, 1993, 96, 229.

    15. [15]

      [15] T. T. Bovkun, Y. Sasson, J. Blum, J. Mol. Catal. A, 2005, 242, 68.

    16. [16]

      [16] E. J. Shin, M. A. Keane, Ind. Eng. Chem. Res., 2000, 39, 883.

    17. [17]

      [17] G. Yuan, J. Llanos Lopez, C. Louis, L. Delannoy, M. A. Keane, Catal. Commun., 2005, 6, 555.

    18. [18]

      [18] H. Li, J. Liu, S. H. Xie, M. H. Qiao, W. L. Dai, Y. F. Lu, H. X. Li, Adv. Funct. Mater., 2008, 18, 3235.

    19. [19]

      [19] P. Makowski, R. Demir Cakan, M. Antonietti, F. Goettmann, M. M. Titirici, Chem. Commun., 2008, 999.

    20. [20]

      [20] J. Morales, R. Hutcheson, C. Noradoun, I. F. Cheng, Ind. Eng. Chem. Res., 2002, 41, 3071.

    21. [21]

      [21] S. Velu, M. P. Kapoor, S. Inagaki, K. Suzuki, Appl. Catal. A, 2003, 245, 317.

    22. [22]

      [22] J. Y. He, C. Zhao, J. A. Lercher, J. Catal.,2014, 309, 362.

    23. [23]

      [23] H. L. Liu, Y. W. Li, R. Luque, H. F. Jiang, Adv. Synth. Catal., 2011, 353, 3107.

    24. [24]

      [24] D. M. Zhang, Y. J. Guan, E. J. M. Hensen, L. Chen, Y. M. Wang, Catal. Commun., 2013, 41, 47.

    25. [25]

      [25] L. Cheng, Q. G. Dai, H. Li, X. Y. Wang, Catal. Commun., 2014, 57, 23.

    26. [26]

      [26] H. Yoshida, S. Narisawa, S. I. Fujita, M. Arai, J. Mol. Catal. A, 2013, 379, 80.

    27. [27]

      [27] Y. Wang, J. Yao, H. R. Li, D. S. Su, M. Antonietti, J. Am. Chem. Soc., 2011, 133, 2362.

    28. [28]

      [28] S. Watanabe, V. Arunajatesan, Top. Catal., 2010, 53, 1150.

    29. [29]

      [29] W. C. Du, S. X. Xia, R. F. Nie, Z. Y. Hou, Ind. Eng. Chem. Res., 2014, 53, 4589.

    30. [30]

      [30] D. D. Zhang, D. L. Wei, Q. Li, X. Ge, X. F. Guo, W. P Ding, Z. K. Xie, Sci. Rep., 2014, 4, 4021.

    31. [31]

      [31] K. R. Priolkar, P. Bera, P. R. Sarode, M. S. Hegde, S. Emura, R. Kumashiro, N. P. Lalla, Chem. Mater., 2002, 14, 2120.

    32. [32]

      [32] V. Z. Radkevich, T. L. Senko, K. Wilson, L. M. Grishenko, A. N. Zaderko, V. Y. Diyuk, Appl. Catal. A, 2008, 335, 241.

    33. [33]

      [33] C. V. Rode, U. D. Joshi, O. Sato, M. Shirai, Chem. Commun., 2003, 1960.

    34. [34]

      [34] S. Kale, S. B. Umbarkar, M. K. Dongare, R. Eckelt, U. Armbruster, A. Martin, Appl. Catal. A, 2015, 490, 10.

    35. [35]

      [35] H. Sakurai, K. Koga, M. Kiuchi, Catal. Today, 2015, 251, 96.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    5. [5]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(0)
  • Abstract views(631)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return