Citation: Chandrasekar Praveen, Paramasivan T. Perumal. Extrapolation of the gold-catalyzed cycloisomerization to the palladium-catalyzed cross-coupling/cycloisomerization of acetylenic alcohols for the synthesis of polysubstituted furans: Scope and application to tandem processes[J]. Chinese Journal of Catalysis, ;2016, 37(2): 288-299. doi: 10.1016/S1872-2067(15)60994-9 shu

Extrapolation of the gold-catalyzed cycloisomerization to the palladium-catalyzed cross-coupling/cycloisomerization of acetylenic alcohols for the synthesis of polysubstituted furans: Scope and application to tandem processes

  • Corresponding author: Chandrasekar Praveen, 
  • Received Date: 9 September 2015
    Available Online: 12 October 2015

    Fund Project:

  • This paper describes the development of an integrated approach for the preparation of diverse furan derivatives from acetylenic alcohols by gold and palladium catalyzed π-activation chemistry. Notably, this new method was found to be amenable to cyclooctyl-containing substrates, which represents a significant extension to this methodology compared with our previous reports. Furthermore, this newly developed method allowed for the direct construction of cyclooctyl furans from their synthetic precursors under Sonogashira conditions. Experimental results revealed that palladium played two major functions in these reactions, including (1) an essential catalyst in the cross-coupling reaction of the substrates; and (2) facilitating the cyclization of the acetylenic alcohol intermediates through a typical π-activation process. The scope of this chemistry was highlighted by the one-pot synthesis of 3-iodofuran, which provided an opportunity for further functionalization (via coupling methods). Finally, the AuBr3 protocol was also elaborated to domino cyclization/C-H activation reactions, as well as the cyclization of acyclic precursors. Taken together, the results of this study demonstrate that gold and palladium catalysts can be used to complement each other in cyclization reactions.
  • 加载中
    1. [1]

      [1] C. H. M. Amijs, C. Ferrer, A. M. Echaverren, Chem. Commun., 2007, 698.

    2. [2]

      [2] A. Hoffmann-Roder, N. Krause, Org. Biomol. Chem., 2005, 3, 387.

    3. [3]

      [3] A. S. K. Hashmi, Angew. Chem. Int. Ed., 2005, 44, 6990.

    4. [4]

      [4] A. Arcadi, S. Di Giuseppe, Curr. Org. Chem., 2004, 8, 795.

    5. [5]

      [5] R. A. Widenhoefer, X. Q. Han, Eur. J. Org. Chem., 2006, 4555.

    6. [6]

      [6] H. C. Shen, Tetrahedron, 2008, 64, 7847.

    7. [7]

      [7] Z. G. Li, C. Brouwer, C. He, Chem. Rev., 2008, 108, 3289.

    8. [8]

      [8] L. M. Zhang, J. W. Sun, S. A. Kozmin, Adv. Synth. Catal., 2006, 348, 2271.

    9. [9]

      [9] N. Asao, Synlett, 2006, 1645.

    10. [10]

      [10] S. M. Ma, S. C. Yu, Z. H. Gu, Angew. Chem. Int. Ed., 2006, 45, 200.

    11. [11]

      [11] A. M. Echavarren, C. Nevado, Chem. Soc. Rev., 2004, 33, 431.

    12. [12]

      [12] G. Dyker, Angew. Chem. Int. Ed., 2000, 39, 4237.

    13. [13]

      [13] A. S. K. Hashmi, Gold Bull., 2004, 37, 51.

    14. [14]

      [14] R. Skouta, C. J. Li, Tetrahedron, 2008, 64, 4917.

    15. [15]

      [15] N. D. Shapiro, F. D. Toste, Synlett, 2010, 675.

    16. [16]

      [16] A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed., 2006, 45, 7896.

    17. [17]

      [17] D. J. Gorin, F. D. Toste, Nature, 2007, 446, 395.

    18. [18]

      [18] A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180.

    19. [19]

      [19] A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed., 2007, 46, 3410.

    20. [20]

      [20] M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev., 2012, 41, 2448.

    21. [21]

      [21] A. S. K. Hashmi, M. Rudolph, Chem. Soc. Rev., 2008, 37, 1766.

    22. [22]

      [22] E. Jiménez-Núñez, A. M. Echavarren, Chem. Commun., 2007, 333.

    23. [23]

      [23] A. S. K. Hashmi, Gold Bull., 2003, 36, 1.

    24. [24]

      [24] C. Praveen, P. Kiruthiga, P. T. Perumal, Synlett, 2009, 1990.

    25. [25]

      [25] C. Praveen, S. Jegatheesan, P. T. Perumal, Synlett, 2009, 2795.

    26. [26]

      [26] C. Praveen, A. Kalyanasundaram, P. T. Perumal, Synlett, 2010, 777.

    27. [27]

      [27] C. Praveen, Y. W. Sagayaraj, P. T. Perumal, Tetrahedron Lett., 2009, 50, 644.

    28. [28]

      [28] C. Praveen, K. Karthikeyan, P. T. Perumal, Tetrahedron, 2009, 65, 9244.

    29. [29]

      [29] Y. P. Zhu, J. J. Yuan, Y. T. Li, M. Gao, L. P. Cao, J. Y. Ding, A. X. Wu, Synlett, 2011, 52.

    30. [30]

      [30] C. Praveen, A. Ayyanar, P. T. Perumal, Bioorg. Med. Chem. Lett., 2011, 21, 4170.

    31. [31]

      [31] H. Gasper, S. Santos, M. Carbone, A. S. Rodrigues, A. I. Rodrigues, M. J. Uriz, S. M. S. Feio, D. Melck, M. Humanes, M. Gavagnin, J. Nat. Prod., 2008, 71, 2049.

    32. [32]

      [32] H. Hikino, Y. Hikino, I. Yosioka, Chem. Pharm. Bull., 1964, 12, 755.

    33. [33]

      [33] R. C. Cambie, P. S. Rutledge, X. S. Yang, P. R. Bergquist, J. Nat. Prod., 1998, 61, 1416.

    34. [34]

      [34] M. Gavagnin, E. Mollo, F. Castelluccio, A. Crispino, G. Cimino, J. Nat. Prod., 2003, 66, 1517.

    35. [35]

      [35] H. Inouye, H. Matsumara, M. Kawasaski, K. Inoue, M. Tsukada, M. Tabata, Phytochemistry, 1981, 20, 1701.

    36. [36]

      [36] M. Kobayashi, A. Muroyama, H. Nakamura, J. Kobayashi, Y. Ohizumi, J. Pharmacol. Exp. Ther., 1991, 257, 90.

    37. [37]

      [37] H. Sakamoto, K. I. Furukawa, K. Matsunaga, H. Nakamura, Y. Ohizumi, Biochemistry, 1995, 34, 12570.

    38. [38]

      [38] W. L. Xiao, H. J. Zhu, Y. H. Shen, R. T. Li, S. H. Li, H. D. Sun, Y. T. Zheng, R. R. Wang, Y. Lu, C. Wang, Q. T. Zheng, Org. Lett., 2005, 7, 2145.

    39. [39]

      [39] N. T. Patil, H. Wu, Y. Yamamoto, J. Org. Chem., 2005, 70, 4531.

    40. [40]

      [40] T. L. Yao, X. X. Zhang, R. C. Larock, J. Am. Chem. Soc., 2004, 126, 11164.

    41. [41]

      [41] S. Goncalves, A. Wagner, C. Mioskowski, R. Baati, Tetrahedron Lett., 2009, 50, 274.

    42. [42]

      [42] M. Yoshida, M. Al-Amin, K. Matsuda, K. Shishido, Tetrahedron Lett., 2008, 49, 5021.

    43. [43]

      [43] J. L. Zhang, H. G. Schmalz, Angew. Chem. Int. Ed., 2006, 45, 6704.

    44. [44]

      [44] A. S. K. Hashmi, L. Schwarz, J. H. Choi, T. M. Frost, Angew. Chem. Int. Ed., 2000, 39: 2285.

    45. [45]

      [45] C. H. Oh, V. R. Reddy, A. Kim, C. Y. Rhim, Tetrahedron Lett., 2006, 47, 5307.

    46. [46]

      [46] G. Mehta, N. S. Likhite, Tetrahedron Lett., 2008, 49, 7113.

    47. [47]

      [47] H-K Yim, Y. Liao, H. N. C. Wong, Tetrahedron, 2003, 59, 1877.

    48. [48]

      [48] A. Chakraborty, G. K. Kar, J. K. Ray, Tetrahedron, 1997, 53, 2989.

    49. [49]

      [49] K. Harada, Y. Tonoi, H. Kato, Y. Fukuyama, Tetrahedron Lett., 2002, 43, 3829.

    50. [50]

      [50] R. E. Patre, S. Gawas, S. Sen, P. S. Parameswaran, S. G. Tilve, Tetrahedron Lett., 2007, 48, 3517.

    51. [51]

      [51] J. S. Foot, A. T. Phillis, P. P. Sharp, A. C. Wills, M. G. Banwell, Tetrahedron Lett., 2006, 47, 6817.

    52. [52]

      [52] G. Blay, L. Cardona, B. Garca, J. R. Pedro, J. J. Snchez, J. Org. Chem., 1996, 61, 3815.

    53. [53]

      [53] M. Inoue, A. J. Frontier, S. J. Danishefsky, Angew. Chem. Int. Ed., 2000, 39, 761.

    54. [54]

      [54] M. Yoshida, M. Al-Amin, K. Shishido, Synthesis, 2009, 2454.

    55. [55]

      [55] A. Blanc, K. Tenbrink, J. M. Weibel, P. Pale, J. Org. Chem., 2009, 74, 5342.

    56. [56]

      [56] S. Borghèse, B. Louis, A. Blanc, P. Pale, Catal. Sci. Technol., 2011, 1, 981.

    57. [57]

      [57] C. Praveen, C. Iyyappan, P. T. Perumal, Tetrahedron Lett., 2010, 51, 4767.

    58. [58]

      [58] C. Praveen, C. Iyyappan, K. Girija, K. S. Kumar, P. T. Perumal, J. Chem. Sci., 2012, 124, 451.

    59. [59]

      [59] C. Praveen, A. Ayyanar, P. T. Perumal, Bioorg. Med. Chem. Lett., 2011, 21, 4072.

    60. [60]

      [60] C. Praveen, P. DheenKumar, D. Muralidharan, P. T. Perumal, Bioorg. Med. Chem. Lett., 2010, 20, 7292.

    61. [61]

      [61] K. Parthasarathy, C. Praveen, C. Balachandran, P. S. Kumar, S. Ignacimuthu, P. T. Perumal, Bioorg. Med. Chem. Lett., 2013, 23, 2708.

    62. [62]

      [62] K. Parthasarathy, C. Praveen, P. S. Kumar, C. Balachandran, P. T. Perumal, RSC Adv., 2015, 5, 15818.

    63. [63]

      [63] C. Praveen, S. Narendiran, P. Dheenkumar, P. T. Perumal, J. Chem. Sci., 2013, 125, 1543.

    64. [64]

      [64] C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake, P. M. Wovkulich, M. R. Uskokoviḉ, Tetrahedron Lett., 1992, 33, 917.

    65. [65]

      [65] D. K. Mohapatra, B. Chatterjee, M. K. Gurjar, Tetrahedron Asymmetry, 2008, 19, 1568.

    66. [66]

      [66] C. K. Sha, S. J. Huang, Z. P. Zhan, J. Org. Chem., 2002, 67, 831.

    67. [67]

      [67] A. L. Germal, J. L. Luche, J. Am. Chem. Soc., 1981, 103, 5454.

    68. [68]

      [68] A. Mayasundari, D. G. J. Young, Tetrahedron Lett., 2001, 42, 203.

    69. [69]

      [69] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 16, 4467.

    70. [70]

      [70] R. Chinchilla, C. Nájera, Chem. Rev., 2007, 107, 874.

    71. [71]

      [71] E. Fillion, R. L. Beingessner, J. Org. Chem., 2003, 68, 9485.

    72. [72]

      [72] L. A. Paquette, J. Ezquerra, W. He, J. Org. Chem., 1995, 60, 1435.

    73. [73]

      [73] A. B. Neef, C. Schultz, Angew. Chem. Int. Ed., 2009, 48, 1498.

    74. [74]

      [74] A. E. Sadak, T. Arslan, N. Celebioglu, N. Saracoglu, Tetrahedron, 2010, 66, 3214.

    75. [75]

      [75] C. B. Reese, A. Shaw, J. Chem. Soc. Perkin Trans. 1, 1975, 2422.

    76. [76]

      [76] G. Zeni, R. C. Larock, Chem. Rev., 2006, 106, 4644.

    77. [77]

      [77] T. W. Lyons, M. S. Sanford, Chem. Rev., 2010, 110, 1147.

    78. [78]

      [78] A. Bacchi, M. Costa, N. Della Cá, M. Fabbricatore, A. Fazio, B. Gabriele, C. Nasi, G. Salerno, Eur. J. Org. Chem., 2004, 574.

    79. [79]

      [79] A. Arcadi, S. Cacchi, M. D. Rosario, G. Fabrizi, F. Marinelli, J. Org. Chem., 1996, 61, 9280.

    80. [80]

      [80] B. Gabriele, G. Salerno, A. Fazio, R. Pittelli, Tetrahedron, 2003, 59, 6251.

    81. [81]

      [81] P. Peng, B. X. Tang, S. F. Pi, Y. Liang, J. H. Li, J. Org. Chem., 2009, 74, 3569.

    82. [82]

      [82] R. D. Stephens, C. E. Castro, J. Org. Chem., 1963, 28, 3313.

    83. [83]

      [83] E. Negishi, Acc. Chem. Res., 1982, 15, 340.

    84. [84]

      [84] E. Erdik, Tetrahedron, 1992, 48, 9577.

    85. [85]

      [85] M. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457.

    86. [86]

      [86] J. K. Stille, Angew. Chem. Int. Ed., 1986, 25, 508.

    87. [87]

      [87] H. A. Dieck, R. F. Heck, J. Am. Chem. Soc., 1974, 96, 1133.

    88. [88]

      [88] G. Dyker, E. Muth, A. S. K. Hashmi, L. Ding, Adv. Synth. Catal., 2003, 345, 1247.

    89. [89]

      [89] M. T. Reetz, K. Sommer, Eur. J. Org. Chem., 2003, 3485.

    90. [90]

      [90] J. A. Marshal, B. G. Shearer, S. L. Crooks, J. Org. Chem., 1987, 52, 1236.

    91. [91]

      [91] S. Kulyk, W. G. Dougherty Jr., W. S. Kassel, M. J. Zdilla, S. McN. Sieburth, Org. Lett., 2011, 13, 2180.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    7. [7]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    8. [8]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    11. [11]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    12. [12]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    18. [18]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    19. [19]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    20. [20]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

Metrics
  • PDF Downloads(2)
  • Abstract views(574)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return