Citation: Yanke Yu, Jinsheng Chen, Jinxiu Wang, Yanting Chen. Performances of CuSO4/TiO2 catalysts in selective catalytic reduction of NOx by NH3[J]. Chinese Journal of Catalysis, ;2016, 37(2): 281-287. doi: 10.1016/S1872-2067(15)60993-7 shu

Performances of CuSO4/TiO2 catalysts in selective catalytic reduction of NOx by NH3

  • Corresponding author: Jinsheng Chen, 
  • Received Date: 30 August 2015
    Available Online: 12 October 2015

    Fund Project: 福建省科技计划工业引导性重点项目-烟气脱硝催化剂再生关键技术研究(2015H0043) (2015H0043) 中国科学院战略性先导科技专项(XDB05050500) (XDB05050500) 国家自然科学基金(21403210). (21403210)

  • A series of CuSO4/TiO2 catalysts were prepared using a wet impregnation method. The activity of each sample in the selective catalytic reduction of NO by NH3 (NH3-SCR) was determined. The effects of SO2 and H2O, and their combined effect, on the activity were examined at 340℃ for 24 h. The catalysts were characterized using N2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction of H2 (H2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and in situ diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS). The CuSO4/TiO2 catalysts had good activities, with low production of N2O above 340℃. SO2 or a combination of SO2 and H2O had little effect on the activity, and H2O caused only a slight decrease in activity during the experimental period. The NH3-TPD and H2-TPR results showed that CuSO4 increased the amounts of acid sites and adsorbed oxygen on the catalyst. In situ DRIFTS showed that the NH3-SCR reaction on the CuSO4/TiO2 catalysts followed an Eley-Rideal mechanism. The reaction of gaseous NO with NH3 adsorbed on Lewis acid sites to form N2 and H2O could be the main reaction pathway, and oxygen adsorption might favor this process.
  • 加载中
    1. [1]

      [1] M. F. Fu, C. T. Li, P. Lu, L. Qu, M. Y. Zhang, Y. Zhou, M. G. Yu, Y. Fang, Catal. Sci. Technol., 2014, 4, 14.

    2. [2]

      [2] Y. Peng, J. H. Li, W. B. Shi, J. X. Xu, J. M. Hao, Environ. Sci. Technol., 2012, 46, 12623.

    3. [3]

      [3] X. Y. Shi, H. He, L. J. Xie, Chin. J. Catal., 2015, 36, 649.

    4. [4]

      [4] G. X. Wu, J. Li, Z. T. Fang, L. Lan, R. Wang, M. C. Gong, Y. Q. Chen, Catal. Commun., 2015, 64, 75.

    5. [5]

      [5] Z. M. Liu, J. H. Li, A. S. M. Junaid, Catal. Today, 2010, 153, 95.

    6. [6]

      [6] W. Q. Xu, H. He, Y. B. Yu, J. Phys. Chem. C, 2009, 113, 4426.

    7. [7]

      [7] W. S. Kijlstra, M. Biervliet, E. K. Poels, A. Bliek, Appl. Catal. B, 1998, 16, 327.

    8. [8]

      [8] F. C. Galisteo, R. Mariscal, M. L. Granados, J. L. G. Fierro, P. Brettes, O. Salas, Environ. Sci. Technol., 2005, 39, 3844.

    9. [9]

      [9] Y. K. Yu, C. He, J. S. Chen, L. Q. Yin, T. X. Qiu, X. R. Meng, Catal. Commun., 2013, 39, 78.

    10. [10]

      [10] Y. K. Yu, J. X. Wang, J. S. Chen, X. R. Meng, Y. T. Chen, C. He, Ind. Eng. Chem. Res., 2014, 53, 16229.

    11. [11]

      [11] G. Y. Xie, Z. Y. Liu, Z. P. Zhu, Q. Y. Liu, J. Ge, Z. G. Huang, J. Catal., 2004, 224, 42.

    12. [12]

      [12] L. Ma, J. H. Li, R. Ke, L. X. Fu, J. Phys. Chem. C, 2011, 115, 7603.

    13. [13]

      [13] D. Pietrogiacomi, D. Sannino, A. Magliano, P. Ciambelli, S. Tuti, V. Indovina, Appl. Catal. B, 2002, 36, 217.

    14. [14]

      [14] L. Pang, C. Fan, L. N. Shao, J. X. Yi, X. Cai, J. Wang, M. Kang, T. Li, Chin. J. Catal., 2014, 35, 2020.

    15. [15]

      [15] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B, 1998, 18, 1.

    16. [16]

      [16] G. Z. Liu, G. L. Zhao, F. X. Meng, S. D. Qu, W. Li, X. W. Zhang, Energy Fuels, 2012, 26, 1220.

    17. [17]

      [17] X. L. Tang, F. Y. Gao, Y. Xiang, H. H. Yi, S. Z. Zhao, Catal. Commun., 2015, 64, 12.

    18. [18]

      [18] D. Lopez, R. Buitrago, A. Sepulveda-Escribano, F. Rodriguez-Reinoso, F. Mondragon, J. Phys. Chem. C, 2008, 112, 15335.

    19. [19]

      [19] S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi, S. Matsuzawa, Appl. Catal. B, 2005, 57, 109.

    20. [20]

      [20] Y. Peng, J. H. Li, W. Z. Si, J. M. Luo, Y. Wang, J. Fu, X. Li, J. Crittenden, J. M. Hao, Appl. Catal. B, 2015, 168, 195.

    21. [21]

      [21] L. K. Boudali, A. Ghorbel, P. Grange, Appl. Catal. A, 2006, 305, 7.

    22. [22]

      [22] N. Y. Topsöe, Science, 1994, 265, 1217.

    23. [23]

      [23] G. Ramis, G. Busca, F. Bregani, P. Forzatti, Appl. Catal., 1990, 64, 259.

    24. [24]

      [24] D. A. Pena, B. S. Uphade, P. G. Smirniotis, J. Catal., 2004, 221, 421.

    25. [25]

      [25] L. Chen, Z. C. Si, X. D. Wu, D. Weng, ACS Appl. Mater. Interf., 2014, 6, 8134.

    26. [26]

      [26] D. Wang, L. Zhang, K. Kamasamudram, W. S. Epling, ACS Catal., 2013, 3, 871.

    27. [27]

      [27] L. Q. Nguyen, C. Salim, H. Hinode, Appl. Catal. B, 2010, 96, 299.

    28. [28]

      [28] M. A. Debeila, N. J. Coville, M. S. Scurrell, G. R. Hearne, Catal. Today, 2002, 72, 79.

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    7. [7]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    8. [8]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(0)
  • Abstract views(652)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return