Citation: Jing Li, Suyao Liu, Huaike Zhang, Enjing Lü, Pengju Ren, Jie Ren. Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction[J]. Chinese Journal of Catalysis, ;2016, 37(2): 308-315. doi: 10.1016/S1872-2067(15)60979-2 shu

Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction

  • Corresponding author: Jie Ren, 
  • Received Date: 23 July 2015
    Available Online: 23 September 2015

  • The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time, and compared with common ellipsoidal and boat-like shaped samples. These samples were characterized by N2 adsorption-desorption, X-ray fluorescence spectroscopy, scanning electron microscopy, X-ray diffraction, magic angle spinning nuclear magnetic resonance, temperature-programmed desorption of ammonia, and infrared spectroscopy of pyridine adsorption. The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar, while the snowflake-shaped ZSM-5 zeolite possesses more of the (101) face, and distortion, dislocation, and asymmetry in the framework, resulting in a larger number of acid sites than the conventional samples. Catalysts for the methanol to olefin (MTO) reaction were prepared by loading Ca on the samples. The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin (72%) and propene (39%) in MTO. The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion, dislocation, and asymmetry in the framework, and lower diffusion limitation than the conventional samples.
  • 加载中
    1. [1]

      [1] R. M. Mohamed, H. M. Aly, M. F. El-Shahat, I. A. Ibrahim, Microporous Mesoporous Mater., 2005, 79, 7.

    2. [2]

      [2] N. B. Chu, J. H. Yang, C. Y. Li, J. Y. Cui, Q. Y. Zhao, X. Y. Yin, J. M. Lu, J. Q. Wang, Microporous Mesoporous Mater., 2009, 118, 169.

    3. [3]

      [3] H. Feng, C. Y. Li, H. H. Shan, Appl. Clay Sci., 2009, 42, 439.

    4. [4]

      [4] J. Lee, U. G. Hong, S. Hwang, M. H. Youn, I. K. Song, Fuel Process Technol., 2013, 108, 25.

    5. [5]

      [5] R. Karimi, B. Bayati, N. Charchi Aghdam, M. Ejtemaee, A. A. Babaluo, Powder Technol., 2012, 229, 229.

    6. [6]

      [6] O. A. Fouad, R. M. Mohamed, M. S. Hassan, I. A. Ibrahim, Catal. Today, 2006, 116, 82.

    7. [7]

      [7] R. M. Mohamed, O. A. Fouad, A. A. Ismail, I. A. Ibrahim, Mater. Lett., 2005, 59, 3441.

    8. [8]

      [8] C. Y. Liu, Y. Q. Liu, M. Cui, H. L. Liu, P. Zhang, R. Xu, Ind. Catal., 2011, 19(6), 37.

    9. [9]

      [9] S. Y. Sang, F. X. Chang, Z. M. Liu, C. Q. He, Y. L. He, L. Xu, Catal. Today, 2004, 93-95, 729.

    10. [10]

      [10] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature, 2009, 461, 246.

    11. [11]

      [11] K. Y. Wang, X. S. Wang, Microporous Mesoporous Mater., 2008, 112, 187.

    12. [12]

      [12] N. Viswanadham, S. K. Saxena, Fuel, 2013, 105, 490.

    13. [13]

      [13] F. Wang, X. L. Jia, J. X. Hu, J. Ren, Y. W. Li, Y. H. Sun, J. Mol. Catal. (China), 2003, 17, 140.

    14. [14]

      [14] S. H. Zhang, B. L. Zhang, Z. X. Gao, Y. Z. Han, J. Fuel Chem. Technol., 2010, 38, 483.

    15. [15]

      [15] Y. S. Bhat, J. Das, K. V. Rao, A. B. Halgeri, J. Catal., 1996, 159, 368.

    16. [16]

      [16] J. Ren, H. K. Zhang, E. J. Lü, S. Y. Liu, J. Li, Y. Yang, Y. W. Li, CN Patent 10441006.7. 2015.

    17. [17]

      [17] G. W. Ma, Z. Q. Xu, H. N. Zhang, J. B. Yang, X. G. Ge, J. R. Peng, J. Chin. Ceram. Soc., 2005, 33, 180.

    18. [18]

      [18] C. Y. Liu, W. Y. Gu, D. J. Kong, H. C. Guo, Microporous Mesoporous Mater., 2014, 183, 30.

    19. [19]

      [19] C. Y. Liu, D. J. Kong, H. C. Guo, Microporous Mesoporous Mater., 2014, 193, 61.

    20. [20]

      [20] Y. Fan, D. Lei, G. Shi, X. J. Bao, Catal. Today, 2006, 114, 388.

    21. [21]

      [21] G. Wu, W. Wu, X. Wang, W. Zan, W. J. Wang, C. Li, Microporous Mesoporous Mater., 2013, 180, 187.

    22. [22]

      [22] X. C. Zhu, L. L. Wu, P. C. M. M. Magusin, B. Mezari, E. J. M. Hensen, J. Catal., 2015, 327, 10.

    23. [23]

      [23] C. J. H. Jacobsen, C. Madsen, T. V. W. Janssens, H. J. Jakobsen, J. Skibsted, Microporous Mesoporous Mater., 2000, 39, 393.

    24. [24]

      [24] J. K. Reddy, K. Motokura, T. Koyama, A. Miyaji, T. Baha, J. Catal., 2012, 289, 53.

    25. [25]

      [25] Y. P. Khitev, Y. G. Kolyagin, I. I. Ivanova, O. A. Ponomareva, F. Thibault-Starzyk, J. P. Gilson, C. Fernandez, F. Fajula, Microporous Mesoporous Mater., 2011, 146, 201.

    26. [26]

      [26] Y. P. Khitev, I. I. Ivanova, Y. G. Kolyagin, O. A. Ponomareva, Appl. Catal. A, 2012, 441-442, 124.

    27. [27]

      [27] D. S. Mao, Q. S. Guo, T. Meng, Acta Phys.-Chim. Sin., 2010, 26, 2242.

    28. [28]

      [28] Y. G. Li, W. H. Xie, S. Yong, Appl. Catal. A, 1997, 150, 231.

    29. [29]

      [29] J. Wang, Y. S. Jin, Y. H. Zhou, J. B. Mo, Appl. Chem. Ind., 2012, 41, 756.

    30. [30]

      [30] M. Kaarsholm, B. Rafii, F. Joensen, R. Cenni, J. Chaouki, G. S. Patierce, Ind. Eng. Chem. Res., 2010, 49, 29.

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

Metrics
  • PDF Downloads(1)
  • Abstract views(1055)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return