Citation:
	            
		            Jing  Li, Suyao  Liu, Huaike  Zhang, Enjing  Lü, Pengju  Ren, Jie  Ren. Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction[J]. Chinese Journal of Catalysis,
							;2016, 37(2): 308-315.
						
							doi:
								10.1016/S1872-2067(15)60979-2
						
					
				
					
				
	        
- 
	                	The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time, and compared with common ellipsoidal and boat-like shaped samples. These samples were characterized by N2 adsorption-desorption, X-ray fluorescence spectroscopy, scanning electron microscopy, X-ray diffraction, magic angle spinning nuclear magnetic resonance, temperature-programmed desorption of ammonia, and infrared spectroscopy of pyridine adsorption. The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar, while the snowflake-shaped ZSM-5 zeolite possesses more of the (101) face, and distortion, dislocation, and asymmetry in the framework, resulting in a larger number of acid sites than the conventional samples. Catalysts for the methanol to olefin (MTO) reaction were prepared by loading Ca on the samples. The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin (72%) and propene (39%) in MTO. The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion, dislocation, and asymmetry in the framework, and lower diffusion limitation than the conventional samples.
- 
								Keywords:
								
 - ZSM-5 zeolite,
 - Modification,
 - Methanol to olefins
 
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] R. M. Mohamed, H. M. Aly, M. F. El-Shahat, I. A. Ibrahim, Microporous Mesoporous Mater., 2005, 79, 7.
 - 
			
                    [2]
                
			
[2] N. B. Chu, J. H. Yang, C. Y. Li, J. Y. Cui, Q. Y. Zhao, X. Y. Yin, J. M. Lu, J. Q. Wang, Microporous Mesoporous Mater., 2009, 118, 169.
 - 
			
                    [3]
                
			
[3] H. Feng, C. Y. Li, H. H. Shan, Appl. Clay Sci., 2009, 42, 439.
 - 
			
                    [4]
                
			
[4] J. Lee, U. G. Hong, S. Hwang, M. H. Youn, I. K. Song, Fuel Process Technol., 2013, 108, 25.
 - 
			
                    [5]
                
			
[5] R. Karimi, B. Bayati, N. Charchi Aghdam, M. Ejtemaee, A. A. Babaluo, Powder Technol., 2012, 229, 229.
 - 
			
                    [6]
                
			
[6] O. A. Fouad, R. M. Mohamed, M. S. Hassan, I. A. Ibrahim, Catal. Today, 2006, 116, 82.
 - 
			
                    [7]
                
			
[7] R. M. Mohamed, O. A. Fouad, A. A. Ismail, I. A. Ibrahim, Mater. Lett., 2005, 59, 3441.
 - 
			
                    [8]
                
			
[8] C. Y. Liu, Y. Q. Liu, M. Cui, H. L. Liu, P. Zhang, R. Xu, Ind. Catal., 2011, 19(6), 37.
 - 
			
                    [9]
                
			
[9] S. Y. Sang, F. X. Chang, Z. M. Liu, C. Q. He, Y. L. He, L. Xu, Catal. Today, 2004, 93-95, 729.
 - 
			
                    [10]
                
			
[10] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature, 2009, 461, 246.
 - 
			
                    [11]
                
			
[11] K. Y. Wang, X. S. Wang, Microporous Mesoporous Mater., 2008, 112, 187.
 - 
			
                    [12]
                
			
[12] N. Viswanadham, S. K. Saxena, Fuel, 2013, 105, 490.
 - 
			
                    [13]
                
			
[13] F. Wang, X. L. Jia, J. X. Hu, J. Ren, Y. W. Li, Y. H. Sun, J. Mol. Catal. (China), 2003, 17, 140.
 - 
			
                    [14]
                
			
[14] S. H. Zhang, B. L. Zhang, Z. X. Gao, Y. Z. Han, J. Fuel Chem. Technol., 2010, 38, 483.
 - 
			
                    [15]
                
			
[15] Y. S. Bhat, J. Das, K. V. Rao, A. B. Halgeri, J. Catal., 1996, 159, 368.
 - 
			
                    [16]
                
			
[16] J. Ren, H. K. Zhang, E. J. Lü, S. Y. Liu, J. Li, Y. Yang, Y. W. Li, CN Patent 10441006.7. 2015.
 - 
			
                    [17]
                
			
[17] G. W. Ma, Z. Q. Xu, H. N. Zhang, J. B. Yang, X. G. Ge, J. R. Peng, J. Chin. Ceram. Soc., 2005, 33, 180.
 - 
			
                    [18]
                
			
[18] C. Y. Liu, W. Y. Gu, D. J. Kong, H. C. Guo, Microporous Mesoporous Mater., 2014, 183, 30.
 - 
			
                    [19]
                
			
[19] C. Y. Liu, D. J. Kong, H. C. Guo, Microporous Mesoporous Mater., 2014, 193, 61.
 - 
			
                    [20]
                
			
[20] Y. Fan, D. Lei, G. Shi, X. J. Bao, Catal. Today, 2006, 114, 388.
 - 
			
                    [21]
                
			
[21] G. Wu, W. Wu, X. Wang, W. Zan, W. J. Wang, C. Li, Microporous Mesoporous Mater., 2013, 180, 187.
 - 
			
                    [22]
                
			
[22] X. C. Zhu, L. L. Wu, P. C. M. M. Magusin, B. Mezari, E. J. M. Hensen, J. Catal., 2015, 327, 10.
 - 
			
                    [23]
                
			
[23] C. J. H. Jacobsen, C. Madsen, T. V. W. Janssens, H. J. Jakobsen, J. Skibsted, Microporous Mesoporous Mater., 2000, 39, 393.
 - 
			
                    [24]
                
			
[24] J. K. Reddy, K. Motokura, T. Koyama, A. Miyaji, T. Baha, J. Catal., 2012, 289, 53.
 - 
			
                    [25]
                
			
[25] Y. P. Khitev, Y. G. Kolyagin, I. I. Ivanova, O. A. Ponomareva, F. Thibault-Starzyk, J. P. Gilson, C. Fernandez, F. Fajula, Microporous Mesoporous Mater., 2011, 146, 201.
 - 
			
                    [26]
                
			
[26] Y. P. Khitev, I. I. Ivanova, Y. G. Kolyagin, O. A. Ponomareva, Appl. Catal. A, 2012, 441-442, 124.
 - 
			
                    [27]
                
			
[27] D. S. Mao, Q. S. Guo, T. Meng, Acta Phys.-Chim. Sin., 2010, 26, 2242.
 - 
			
                    [28]
                
			
[28] Y. G. Li, W. H. Xie, S. Yong, Appl. Catal. A, 1997, 150, 231.
 - 
			
                    [29]
                
			
[29] J. Wang, Y. S. Jin, Y. H. Zhou, J. B. Mo, Appl. Chem. Ind., 2012, 41, 756.
 - 
			
                    [30]
                
			
[30] M. Kaarsholm, B. Rafii, F. Joensen, R. Cenni, J. Chaouki, G. S. Patierce, Ind. Eng. Chem. Res., 2010, 49, 29.
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
 - 
				[2]
				
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
 - 
				[3]
				
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
 - 
				[4]
				
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
 - 
				[5]
				
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
 - 
				[6]
				
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
 - 
				[7]
				
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
 - 
				[8]
				
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
 - 
				[9]
				
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
 - 
				[10]
				
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
 - 
				[11]
				
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
 - 
				[12]
				
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
 - 
				[13]
				
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012
 - 
				[14]
				
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
 - 
				[15]
				
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
 - 
				[16]
				
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
 - 
				[17]
				
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
 - 
				[18]
				
Lilong Gao , Yuhao Zhai , Dongdong Zhang , Linjun Huang , Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143
 - 
				[19]
				
Wenjun Yang , Qiaoling Tan , Wenjiao Xie , Xiaoyu Pan , Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150
 - 
				[20]
				
Binbin Liu , Yang Chen , Tianci Jia , Chen Chen , Zhanghao Wu , Yuhui Liu , Yuhang Zhai , Tianshu Ma , Changlei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-. doi: 10.1016/j.actphy.2025.100128
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1)
 - Abstract views(1372)
 - HTML views(254)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: