Citation: Ting Yi, Yibo Zhang, Jingwei Li, Xiangguang Yang. Promotional effect of H3PO4 on ceria catalyst for selective catalytic reduction of NO by NH3[J]. Chinese Journal of Catalysis, ;2016, 37(2): 300-307. doi: 10.1016/S1872-2067(15)60977-9 shu

Promotional effect of H3PO4 on ceria catalyst for selective catalytic reduction of NO by NH3

  • Corresponding author: Yibo Zhang,  Xiangguang Yang, 
  • Received Date: 24 July 2015
    Available Online: 24 September 2015

    Fund Project: 国家自然科学基金(21177120) (21177120)

  • A series of H3PO4-modified CeO2 samples were prepared by impregnation of CeO2 with H3PO4 solution, and evaluated for the selective catalytic reduction of NOx by NH3. The samples were characterized by X-ray diffraction, N2 adsorption-desorption, infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of NH3, and temperature-programmed reduction of H2. The results showed that more than 80% NO conversion was achieved in the temperature range 250-550℃ over the H3PO4-CeO2 catalyst. The enhanced catalytic performance could be ascribed to the increase in acidic strength, especially Brönsted acidity, and reduction in redox properties of the CeO2 after H3PO4 modification.
  • 加载中
    1. [1]

      [1] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B, 1998, 18, 1.

    2. [2]

      [2] L. Chen, Z. C. Si, X. D. Wu, D. Weng, R. Ran, J. Yu, J. Rare Earth, 2014, 32, 907.

    3. [3]

      [3] W. P. Shan, F. D. Liu, Y. B. Yu, H. He, Chin. J. Catal., 2014, 35, 1251.

    4. [4]

      [4] L. Lietti, I. Nova, G. Ramis, L. Dall'Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, J. Catal., 1999, 187, 419.

    5. [5]

      [5] Z. L. Zhang, Y. Z. Fan, Y. Xin, Q. Li, R. R. Li, J. A. Anderson, Z. L. Zhang, Environ. Sci. Technol., 2015, 49, 7989.

    6. [6]

      [6] M. V. Twigg, Appl. Catal. B, 2007, 70, 2.

    7. [7]

      [7] N. Y. Topsøe, Sicence, 1994, 265, 1217.

    8. [8]

      [8] P. Li, Y. Xin, Q. Li, Z. P. Wang, Z. L. Zhang, L. R. Zheng, Environ. Sci. Technol., 2012, 46, 9600.

    9. [9]

      [9] L. Lietti, P. Forzatti, J. Catal., 1994, 147, 241.

    10. [10]

      [10] Y. Li, H. Cheng, D. Y. Li, Y. S. Qin, Y. M. Xie, S. D. Wang, Chem. Commun., 2008, 1470.

    11. [11]

      [11] Q. Y. Liu, Z. Y. Liu, C. Y. Li, Chin. J. Catal., 2006, 27, 636.

    12. [12]

      [12] G. Busca, Chem. Rev., 2010, 110, 2217.

    13. [13]

      [13] W. P. Shan, F. D. Liu, H. He, X. Y. Shi, C. B. Zhang, Chem. Commun., 2011, 47, 8046.

    14. [14]

      [14] F. D. Liu, Y. B. Yu, H. He, Chem. Commun., 2014, 50, 8445.

    15. [15]

      [15] L. Chen, J. H. Li, M. F. Ge, R. H. Zhu, Catal. Today, 2010, 153, 77.

    16. [16]

      [16] M. Casapu, A. Bernhard, D. Peitz, M Mehring, M. Elsener, O.Kröcher, Appl. Catal. B, 2011, 103, 79.

    17. [17]

      [17] Z. C. Si, D. Weng, X. D. Wu, J. Yang, B. Wang, Catal. Commun., 2010, 11, 1045.

    18. [18]

      [18] T. T. Gu, Y. Liu, X. L. Weng, H. Q. Wang, Z. B. Wu, Catal. Commun., 2010, 12, 310.

    19. [19]

      [19] J. Yu, Z. C. Si, L. Chen, X. D. Wu, D. Weng, Appl. Catal. B, 2015, 163, 223.

    20. [20]

      [20] Z. C. Si, D. Weng, X. D. Wu, R. Ran, Z. R. Ma, Catal. Commun., 2012, 17, 146.

    21. [21]

      [21] F. Li, Y. B. Zhang, D. H. Xiao, D. Q. Wang, X. Q. Pan, X. G. Yang, ChemCatChem, 2010, 2, 1416.

    22. [22]

      [22] F. Li, D. H. Xiao, Y. B. Zhang, D. Q. Wang, X. Q. Pan, X. G. Yang, Chin. J. Catal., 2010, 31, 938.

    23. [23]

      [23] L. Zhang, L. L. Li, Y. Cao, X. J. Yao, C. Y. Ge, F. Gao, Y. Deng, C. J. Tang, L. Dong, Appl. Catal. B, 2015, 165, 589.

    24. [24]

      [24] Z. M. Liu, H. Su, J. H. Li, Y. Li, Catal. Commun., 2015, 65, 51.

    25. [25]

      [25] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R. J. Willey, J. Catal., 1995, 157, 523.

    26. [26]

      [26] M. V. Le, D. S. Tsai, C. Y. Yang, W. H. Chung, H. Y. Lee, Electrochim. Acta, 2011, 56, 6654.

    27. [27]

      [27] D. Bregiroux, F. Audubert, T. Charpentier, D. Sakellariou, D. Bernache-Assollant, Solid State Sci., 2007, 9, 432.

    28. [28]

      [28] M. Tsuhako, S. Ikeuchi, T. Matsuo, I. Motooka, M. Kobayash, Chem. Lett., 1977, 195.

    29. [29]

      [29] M. Tsuhako, S. Ikeuchi, T. Matsuo, I. Motooka, M. Kobayash, Bull. Chem. Soc. Jpn., 1979, 52, 1034.

    30. [30]

      [30] S. Rossignol, F. Gérard, D. Mesnard, C. Kappenstein, D. Duprez, J. Mater. Chem., 2003, 13, 3017.

    31. [31]

      [31] G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, Sens. Actuators B, 2006, 114, 687.

    32. [32]

      [32] M. López Granados, F. Cabello Galisteo, P. S. Lambrou, R. Mariscal, J. Sanz, I. Sobrados, J. L. G. Fierro, A. M. Efstathiou, J. Catal., 2006, 239, 410.

    33. [33]

      [33] C. Larese, M. López Granados, R. Mariscal, J. L. G. Fierro, P. S. Lambrou, A. M. Efstathiou, Appl. Catal. B, 2005, 59, 13.

    34. [34]

      [34] D. Uy, A. E. O'Neill, L. Xu, W. H. Weber, R. W. McCabe, Appl. Catal. B, 2003, 41, 269.

    35. [35]

      [35] T. Masui, H. Hirai, N. Imanaka, G. Adachi, Phys. Status Solidi. A, 2003, 198, 364.

    36. [36]

      [36] D. E. C. Corbridge, E. J. Lowe, J. Chem. Soc., 1954, 493, 4555.

    37. [37]

      [37] L. Y. Zhang, R. K. Brow, J. Am. Ceram. Soc., 2011, 94, 3123.

    38. [38]

      [38] S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, F. Audubert, J. Solid State Chem., 2004, 177, 1302.

    39. [39]

      [39] I. Szczygiel, L. Macalik, E. Radomińska, T. Znamierowska, M. Mączka, P. Godlewska, J. Hanuza, Opt. Mater., 2007, 29, 1192.

    40. [40]

      [40] S. Briche, D. Zambon, G. Chadeyron, D. Boyer, M. Dubois, R. Mahiou, J. Sol-Gel Sci. Technol., 2010, 55, 41.

    41. [41]

      [41] R. Zhao, Y. Q. Wang, Y. L. Guo, Y. Guo, X. H. Liu, Z. G. Zhang, Y. S. Wang, W. C. Zhan, G. Z. Lu, Green Chem., 2006, 8, 459.

    42. [42]

      [42] C. Larese, F. Cabello Galisteo, M. López Granados, R. Mariscal, J. L. G. Fierro, P. S. Lambrou, A. M. Efstathiou, J. Catal., 2004, 226, 443.

    43. [43]

      [43] Y. B. Zhang, D. Q. Wang, J. Wang, Q. F. Chen, Z. D. Zhang, X. Q. Pan, Z. Z. Miao, B. Zhang, Z. J. Wu, X. G. Yang, Chin. J. Catal., 2012, 33, 1448.

    44. [44]

      [44] M. Kang, E. D. Park, J. M. Kim, J. E. Yie, Appl. Catal. A, 2007, 327, 261.

    45. [45]

      [45] R. K. Brow, J. Non-Cryst. Solids, 1996, 194, 267.

    46. [46]

      [46] Q. C. Lin, J. H Li, L. Ma, J. M. Hao, Catal. Today, 2010, 151, 251.

    47. [47]

      [47] M. J. Li, Y. Yeom, E. Weitz, W. M. H.. Sachtler, Catal. Lett., 2006, 112, 129.

    48. [48]

      [48] S. Brandenberger, O. Kröcher, A. Wokaun, A. Tissler, R. Althoff, J. Catal., 2009, 268, 297.

    49. [49]

      [49] M. Schwidder, M. S. Kumar, U. Bentrup, J. Perez-Ramirez, A. Brückner, W. Grünert, Microporous Mesoporous Mater., 2008, 111, 124.

    50. [50]

      [50] I. Atribak, A. Bueno-López, A. García-García, J. Catal., 2008, 259, 123.

    51. [51]

      [51] J. J. Zhu, A. Thomas, Appl. Catal. B, 2009, 92, 225.

    52. [52]

      [52] Q. B. Liu, Z. Zhang, Y. Du, J. Li, X. G. Yang, Catal. Lett., 2009, 127, 419.

    53. [53]

      [53] Z. Zhang, J. Li, X. G. Yang, Catal. Lett., 2007, 118, 300.

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(0)
  • Abstract views(667)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return