Citation:
	            
		            Ting  Yi, Yibo  Zhang, Jingwei  Li, Xiangguang  Yang. Promotional effect of H3PO4 on ceria catalyst for selective catalytic reduction of NO by NH3[J]. Chinese Journal of Catalysis,
							;2016, 37(2): 300-307.
						
							doi:
								10.1016/S1872-2067(15)60977-9
						
					
				
					
				
	        
- 
	                	A series of H3PO4-modified CeO2 samples were prepared by impregnation of CeO2 with H3PO4 solution, and evaluated for the selective catalytic reduction of NOx by NH3. The samples were characterized by X-ray diffraction, N2 adsorption-desorption, infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of NH3, and temperature-programmed reduction of H2. The results showed that more than 80% NO conversion was achieved in the temperature range 250-550℃ over the H3PO4-CeO2 catalyst. The enhanced catalytic performance could be ascribed to the increase in acidic strength, especially Brönsted acidity, and reduction in redox properties of the CeO2 after H3PO4 modification.
- 
								Keywords:
								
 - Ammonia,
 - Selective catalytic reduction,
 - Ceria,
 - Phosphoric acid,
 - Redox,
 - Acidity
 
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
[1] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B, 1998, 18, 1.
 - 
			
                    [2]
                
			
[2] L. Chen, Z. C. Si, X. D. Wu, D. Weng, R. Ran, J. Yu, J. Rare Earth, 2014, 32, 907.
 - 
			
                    [3]
                
			
[3] W. P. Shan, F. D. Liu, Y. B. Yu, H. He, Chin. J. Catal., 2014, 35, 1251.
 - 
			
                    [4]
                
			
[4] L. Lietti, I. Nova, G. Ramis, L. Dall'Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, J. Catal., 1999, 187, 419.
 - 
			
                    [5]
                
			
[5] Z. L. Zhang, Y. Z. Fan, Y. Xin, Q. Li, R. R. Li, J. A. Anderson, Z. L. Zhang, Environ. Sci. Technol., 2015, 49, 7989.
 - 
			
                    [6]
                
			
[6] M. V. Twigg, Appl. Catal. B, 2007, 70, 2.
 - 
			
                    [7]
                
			
[7] N. Y. Topsøe, Sicence, 1994, 265, 1217.
 - 
			
                    [8]
                
			
[8] P. Li, Y. Xin, Q. Li, Z. P. Wang, Z. L. Zhang, L. R. Zheng, Environ. Sci. Technol., 2012, 46, 9600.
 - 
			
                    [9]
                
			
[9] L. Lietti, P. Forzatti, J. Catal., 1994, 147, 241.
 - 
			
                    [10]
                
			
[10] Y. Li, H. Cheng, D. Y. Li, Y. S. Qin, Y. M. Xie, S. D. Wang, Chem. Commun., 2008, 1470.
 - 
			
                    [11]
                
			
[11] Q. Y. Liu, Z. Y. Liu, C. Y. Li, Chin. J. Catal., 2006, 27, 636.
 - 
			
                    [12]
                
			
[12] G. Busca, Chem. Rev., 2010, 110, 2217.
 - 
			
                    [13]
                
			
[13] W. P. Shan, F. D. Liu, H. He, X. Y. Shi, C. B. Zhang, Chem. Commun., 2011, 47, 8046.
 - 
			
                    [14]
                
			
[14] F. D. Liu, Y. B. Yu, H. He, Chem. Commun., 2014, 50, 8445.
 - 
			
                    [15]
                
			
[15] L. Chen, J. H. Li, M. F. Ge, R. H. Zhu, Catal. Today, 2010, 153, 77.
 - 
			
                    [16]
                
			
[16] M. Casapu, A. Bernhard, D. Peitz, M Mehring, M. Elsener, O.Kröcher, Appl. Catal. B, 2011, 103, 79.
 - 
			
                    [17]
                
			
[17] Z. C. Si, D. Weng, X. D. Wu, J. Yang, B. Wang, Catal. Commun., 2010, 11, 1045.
 - 
			
                    [18]
                
			
[18] T. T. Gu, Y. Liu, X. L. Weng, H. Q. Wang, Z. B. Wu, Catal. Commun., 2010, 12, 310.
 - 
			
                    [19]
                
			
[19] J. Yu, Z. C. Si, L. Chen, X. D. Wu, D. Weng, Appl. Catal. B, 2015, 163, 223.
 - 
			
                    [20]
                
			
[20] Z. C. Si, D. Weng, X. D. Wu, R. Ran, Z. R. Ma, Catal. Commun., 2012, 17, 146.
 - 
			
                    [21]
                
			
[21] F. Li, Y. B. Zhang, D. H. Xiao, D. Q. Wang, X. Q. Pan, X. G. Yang, ChemCatChem, 2010, 2, 1416.
 - 
			
                    [22]
                
			
[22] F. Li, D. H. Xiao, Y. B. Zhang, D. Q. Wang, X. Q. Pan, X. G. Yang, Chin. J. Catal., 2010, 31, 938.
 - 
			
                    [23]
                
			
[23] L. Zhang, L. L. Li, Y. Cao, X. J. Yao, C. Y. Ge, F. Gao, Y. Deng, C. J. Tang, L. Dong, Appl. Catal. B, 2015, 165, 589.
 - 
			
                    [24]
                
			
[24] Z. M. Liu, H. Su, J. H. Li, Y. Li, Catal. Commun., 2015, 65, 51.
 - 
			
                    [25]
                
			
[25] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R. J. Willey, J. Catal., 1995, 157, 523.
 - 
			
                    [26]
                
			
[26] M. V. Le, D. S. Tsai, C. Y. Yang, W. H. Chung, H. Y. Lee, Electrochim. Acta, 2011, 56, 6654.
 - 
			
                    [27]
                
			
[27] D. Bregiroux, F. Audubert, T. Charpentier, D. Sakellariou, D. Bernache-Assollant, Solid State Sci., 2007, 9, 432.
 - 
			
                    [28]
                
			
[28] M. Tsuhako, S. Ikeuchi, T. Matsuo, I. Motooka, M. Kobayash, Chem. Lett., 1977, 195.
 - 
			
                    [29]
                
			
[29] M. Tsuhako, S. Ikeuchi, T. Matsuo, I. Motooka, M. Kobayash, Bull. Chem. Soc. Jpn., 1979, 52, 1034.
 - 
			
                    [30]
                
			
[30] S. Rossignol, F. Gérard, D. Mesnard, C. Kappenstein, D. Duprez, J. Mater. Chem., 2003, 13, 3017.
 - 
			
                    [31]
                
			
[31] G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, Sens. Actuators B, 2006, 114, 687.
 - 
			
                    [32]
                
			
[32] M. López Granados, F. Cabello Galisteo, P. S. Lambrou, R. Mariscal, J. Sanz, I. Sobrados, J. L. G. Fierro, A. M. Efstathiou, J. Catal., 2006, 239, 410.
 - 
			
                    [33]
                
			
[33] C. Larese, M. López Granados, R. Mariscal, J. L. G. Fierro, P. S. Lambrou, A. M. Efstathiou, Appl. Catal. B, 2005, 59, 13.
 - 
			
                    [34]
                
			
[34] D. Uy, A. E. O'Neill, L. Xu, W. H. Weber, R. W. McCabe, Appl. Catal. B, 2003, 41, 269.
 - 
			
                    [35]
                
			
[35] T. Masui, H. Hirai, N. Imanaka, G. Adachi, Phys. Status Solidi. A, 2003, 198, 364.
 - 
			
                    [36]
                
			
[36] D. E. C. Corbridge, E. J. Lowe, J. Chem. Soc., 1954, 493, 4555.
 - 
			
                    [37]
                
			
[37] L. Y. Zhang, R. K. Brow, J. Am. Ceram. Soc., 2011, 94, 3123.
 - 
			
                    [38]
                
			
[38] S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, F. Audubert, J. Solid State Chem., 2004, 177, 1302.
 - 
			
                    [39]
                
			
[39] I. Szczygiel, L. Macalik, E. Radomińska, T. Znamierowska, M. Mączka, P. Godlewska, J. Hanuza, Opt. Mater., 2007, 29, 1192.
 - 
			
                    [40]
                
			
[40] S. Briche, D. Zambon, G. Chadeyron, D. Boyer, M. Dubois, R. Mahiou, J. Sol-Gel Sci. Technol., 2010, 55, 41.
 - 
			
                    [41]
                
			
[41] R. Zhao, Y. Q. Wang, Y. L. Guo, Y. Guo, X. H. Liu, Z. G. Zhang, Y. S. Wang, W. C. Zhan, G. Z. Lu, Green Chem., 2006, 8, 459.
 - 
			
                    [42]
                
			
[42] C. Larese, F. Cabello Galisteo, M. López Granados, R. Mariscal, J. L. G. Fierro, P. S. Lambrou, A. M. Efstathiou, J. Catal., 2004, 226, 443.
 - 
			
                    [43]
                
			
[43] Y. B. Zhang, D. Q. Wang, J. Wang, Q. F. Chen, Z. D. Zhang, X. Q. Pan, Z. Z. Miao, B. Zhang, Z. J. Wu, X. G. Yang, Chin. J. Catal., 2012, 33, 1448.
 - 
			
                    [44]
                
			
[44] M. Kang, E. D. Park, J. M. Kim, J. E. Yie, Appl. Catal. A, 2007, 327, 261.
 - 
			
                    [45]
                
			
[45] R. K. Brow, J. Non-Cryst. Solids, 1996, 194, 267.
 - 
			
                    [46]
                
			
[46] Q. C. Lin, J. H Li, L. Ma, J. M. Hao, Catal. Today, 2010, 151, 251.
 - 
			
                    [47]
                
			
[47] M. J. Li, Y. Yeom, E. Weitz, W. M. H.. Sachtler, Catal. Lett., 2006, 112, 129.
 - 
			
                    [48]
                
			
[48] S. Brandenberger, O. Kröcher, A. Wokaun, A. Tissler, R. Althoff, J. Catal., 2009, 268, 297.
 - 
			
                    [49]
                
			
[49] M. Schwidder, M. S. Kumar, U. Bentrup, J. Perez-Ramirez, A. Brückner, W. Grünert, Microporous Mesoporous Mater., 2008, 111, 124.
 - 
			
                    [50]
                
			
[50] I. Atribak, A. Bueno-López, A. García-García, J. Catal., 2008, 259, 123.
 - 
			
                    [51]
                
			
[51] J. J. Zhu, A. Thomas, Appl. Catal. B, 2009, 92, 225.
 - 
			
                    [52]
                
			
[52] Q. B. Liu, Z. Zhang, Y. Du, J. Li, X. G. Yang, Catal. Lett., 2009, 127, 419.
 - 
			
                    [53]
                
			
[53] Z. Zhang, J. Li, X. G. Yang, Catal. Lett., 2007, 118, 300.
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
 - 
				[2]
				
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
 - 
				[3]
				
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
 - 
				[4]
				
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
 - 
				[5]
				
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
 - 
				[6]
				
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
 - 
				[7]
				
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
 - 
				[8]
				
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
 - 
				[9]
				
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
 - 
				[10]
				
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
 - 
				[11]
				
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
 - 
				[12]
				
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
 - 
				[13]
				
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
 - 
				[14]
				
Haoran Zhang , Yaxin Jin , Peng Kang , Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099
 - 
				[15]
				
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. - 
				[16]
				
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
 - 
				[17]
				
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
 - 
				[18]
				
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
 - 
				[19]
				
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
 - 
				[20]
				
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(0)
 - Abstract views(928)
 - HTML views(111)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: