Citation: Junjie Zhang, Fang Lu, Weiqiang Yu, Rui Lu, Jie Xu. Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst[J]. Chinese Journal of Catalysis, ;2016, 37(1): 177-183. doi: 10.1016/S1872-2067(15)60976-7 shu

Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst

  • Corresponding author: Fang Lu,  Jie Xu, 
  • Received Date: 28 August 2015
    Available Online: 24 September 2015

    Fund Project: 国家自然科学基金(21203183, 21233008, 21473188). (21203183, 21233008, 21473188)

  • Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions. We investigated the effects of two different alkaline additives, Ca(OH)2 and La(OH)3, on lactic acid formation during sorbitol hydrogenolysis over Ni/C catalyst. In the case of Ca(OH)2, the selectivity of lactic acid was 8.9%. In contrast, the inclusion of La(OH)3 resulted in a sorbitol conversion of 99% with only trace quantities of lactic acid being detected. In addition, the total selectivity towards the C2 and C4 products increased from 20.0% to 24.5% going from Ca(OH)2 to La(OH)3. These results therefore indicated that La(OH)3 could be used as an efficient alkaline additive to enhance the conversion of sorbitol. Pyruvic aldehyde, which is formed as an intermediate during sorbitol hydrogenolysis, can be converted to both 1,2-propylene glycol and lactic acid by hydrogenation and rearrangement reactions, respectively. Notably, these two reactions are competitive. When Ca(OH)2 was used as an additive for sorbitol hydrogenolysis, both the hydrogenation and rearrangement reactions occurred. In contrast, the use of La(OH)3 favored the hydrogenation reaction, with only trace quantities of lactic acid being formed.
  • 加载中
    1. [1]

      [1] A. M. Ruppert, K. Weinberg, R. Palkovits, Angew. Chem. Int. Ed., 2012, 51, 2564.

    2. [2]

      [2] W. P. Deng, M. Liu, X. S. Tan, Q. H .Zhang, Y. Wang, J. Catal., 2010, 271, 22.

    3. [3]

      [3] S. Saravanamurugan, A. Riisager, ChemCatChem, 2013, 5, 1754.

    4. [4]

      [4] D. K. Sohounloue, C. Montassier, J. Barbier, React. Kinet. Catal. Lett., 1983, 22, 391.

    5. [5]

      [5] M. Banu, P. Venuvanalingam, R. Shanmugam, B. Viswanathan, S. Sivasanker, Top. Catal., 2012, 55, 897.

    6. [6]

      [6] I. M. Leo, M. L. Granados, J. L. G. Fierro, R. Mariscal, Chin. J. Catal., 2014, 35, 614.

    7. [7]

      [7] L. M. Ye, X. P. Duan, H. Q. Lin, Y. Z. Yuan, Catal. Today, 2012, 183, 65.

    8. [8]

      [8] X. G. Chen, X. C. Wang, S. X. Yao, X. D. Mu, Catal. Commun., 2013, 39, 86.

    9. [9]

      [9] L. Zhao, J. H. Zhou, Z. J. Sui, X. G. Zhou, Chem. Eng. Sci., 2010, 65, 30.

    10. [10]

      [10] K. Y. Wang, M. C. Hawley, T. D. Furney, Ind. Eng. Chem. Res., 1995, 34, 3766.

    11. [11]

      [11] J. Y. Sun, H. C. Liu, Green Chem., 2011, 13, 135.

    12. [12]

      [12] I. Clark, Ind. Eng. Chem., 1958, 50, 1125.

    13. [13]

      [13] J. Y. Sun, H. C. Liu, Catal. Today, 2014, 234, 75.

    14. [14]

      [14] M. Banu, S. Sivasanker, T. M. Sankaranarayanan, P. Venuvanalingam, Catal. Commun., 2011, 12, 673.

    15. [15]

      [15] T. A. Werpy, J. G. Frye, A. H. Zacher, D. J. Miller, US Patent 0 130 545. 2003.

    16. [16]

      [16] F. Auneau, M. Berchu, G. Aubert, C. Pinel, M. Besson, D. Todaro, M. Bernardi, T. Ponsetti, R. Di Felice, Catal. Today, 2014, 234, 100.

    17. [17]

      [17] J. H. Zhou, M. G Zhang, L. Zhao, P. Li, X. G. Zhou, W. K. Yuan, Catal. Today, 2009, 147, S225.

    18. [18]

      [18] L. Zhao, J. H. Zhou, H. Chen, M. G. Zhang, Z. J. Sui, X. G. Zhou, Korean J. Chem. Eng., 2010, 27, 1412.

    19. [19]

      [19] J. H. Zhou, G. C. Liu, Z. J. Sui, X. G. Zhou, W. K. Yuan, Chin. J. Catal., 2014, 35, 692.

    20. [20]

      [20] T. Soták, T. Schmidt, M. Hronec, Appl. Catal. A, 2013, 459, 26.

    21. [21]

      [21] Z. W. Huang, J. Chen, Y. Q. Jia, H. L. Liu, C. G .Xia, H. C. Liu, Appl. Catal. B, 2014, 147, 377.

    22. [22]

      [22] J. J. Zhang, F. Lu, W. Q. Yu, J. Z. Chen, S. Chen, J. Gao, J. Xu, Catal. Today, 2014, 234, 107.

    23. [23]

      [23] W. Q. Yu, F. Lu, Y. L. Yang, J. J. Zhang, J. Gao, F. Wang, J. Xu, Energy Environ. Focus, 2012, 1, 99.

    24. [24]

      [24] B. P. Gangwar, V. Palakollu, A. Singh, S. Kanvah, S. Sharma, RSC Adv., 2014, 4, 55407.

    25. [25]

      [25] R. Y. Sun, T. T. Wang, M. Y. Zheng, W. Q. Deng, J. F. Pang, A. Q. Wang, X. D. Wang, T. Zhang, ACS Catal., 2015, 5, 874.

    26. [26]

      [26] Z. G. Zhang, J. E. Jackson, D. J. Miller, Ind. Eng. Chem. Res., 2002, 41, 691.

    27. [27]

      [27] Z. G. Zhang, J. E. Jackson, D. J. Miller, Appl. Catal. A, 2001, 219, 89.

    28. [28]

      [28] E. P. Maris, R. J. Davis, J. Catal., 2007, 249, 328.

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    7. [7]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    11. [11]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(0)
  • Abstract views(914)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return