Citation: Xiaohui Du, Xueli Li, Haitao Zhang, Xionghou Gao. Kinetics study and analysis of zeolite Y destruction[J]. Chinese Journal of Catalysis, ;2016, 37(2): 316-323. doi: 10.1016/S1872-2067(15)60975-5 shu

Kinetics study and analysis of zeolite Y destruction

  • Corresponding author: Xionghou Gao, 
  • Received Date: 23 July 2015
    Available Online: 18 September 2015

    Fund Project:

  • A series of zeolites, including USY zeolites without sodium, Na-USY at different Na contents, La-USY with different rare earth (RE) contents and La-Na-USY with RE and Na were prepared by an ion exchange method. They were investigated to understand the activation barriers for the destruction of Y zeolite structure under hydrothermal treatment and the effect of V using the solid-state kinetic model. The results showed that the pathways for Y zeolite destruction were dealumination, desiliconization and the disappearance of La-O bonds. Zeolites were destroyed by steam through acid hydrolysis, which was accelerated by V. In addition, Na and V exerted a synergistic effect on the framework destruction, and the formation of NaOH was the rate-determining step. The presence of RE elements decreased hydrolysis and stabilized the structure of the zeolites. The interaction between V and RE destroyed zeolite structure by eliminating the stabilizing La-O [RE-OH-RE]5+ bridges in the sodalite cages.
  • 加载中
    1. [1]

      [1] G. H. Kühl, J. Phys. Chem. Solids, 1977, 38, 1259.

    2. [2]

      [2] Y. X. Zhao, B. W. Wojciechowski, J. Catal., 1996, 163, 365.

    3. [3]

      [3] L. A. Pine, J. Catal., 1990, 125, 514.

    4. [4]

      [4] R. F. Wormsbecher, A. W. Peters, J. M. Maselli, J. Catal., 1986, 100, 130.

    5. [5]

      [5] D. V. Cristiano-Torres, Y. Osorio-Pérez, L. A. Palomeque-Forero, L. E. Sandoval-Díaz, C. A. Trujillo, Appl. Catal. A, 2008, 346, 104.

    6. [6]

      [6] K. Hagiwara, T. Ebihara, N. Urasato, S.Ozawa, S. Nakata, Appl. Catal. A, 2003, 249, 213.

    7. [7]

      [7] A. S. Escobar, M. M. Pereira, R. D. M. Pimenta, L. Y. Lau, H. S. Cerqueira, Appl. Catal. A, 2005, 286, 196.

    8. [8]

      [8] M. L. Occelli, Catal. Rev. Sci. Eng., 1991, 33, 241.

    9. [9]

      [9] E. Wiberg, A. F. Holleman, Inorganic Chemistry. Academic Press, Berlin, 2001, 1349.

    10. [10]

      [10] J. Scherzer, Stud. Surf. Sci. Catal., 1993, 76, 145.

    11. [11]

      [11] L. E. Sandoval-Díaz, L. A. Palomeque-Forero, C. A. Trujillo, Appl. Catal. A, 2011, 393, 171.

    12. [12]

      [12] M. T. Xu, X. S. Liu, R. J. Madon, Prepr. Am. Chem. Soc., Div. Petro. Chem., 2000, 45, 307.

    13. [13]

      [13] M. T. Xu, X. S. Liu, R. J. Madon, J. Catal., 2002, 207, 237.

    14. [14]

      [14] X. H. Du, H. T. Zhang, X. L. Li, Z. G. Tan, H. H. Liu, X. H. Gao, Chin. J. Catal., 2013, 34, 1599.

    15. [15]

      [15] C. R. Moreira, M. M. Pereira, X. Alcobé, N. Homs, J. Llorca, J. L. G. Fierro, P. R. Piscina, Microporous Mesoporous Mater., 2007, 100, 276.

    16. [16]

      [16] C. R. Moreira, N. Homs, J. L. G. Fierro, M. M. Pereira, P. R. de la Piscina, Microporous Mesoporous Mater., 2010, 133, 75.

    17. [17]

      [17] J. A. Rabo, Zeolite Chemistry and Catalysis, Vol. 171. ACS Monograph, Washington, 1976, Chapter 3.

    18. [18]

      [18] J. G. Nery, M. V. Giotto, Y. P. Mascarenhas, D. Cardoso, F. M. Z. Zotin, E. F. Sousa-Aguiar, Microporous Mesoporous Mater., 2000, 41, 281.

    19. [19]

      [19] H. Klein, H. Fuess, M. Hunger, J. Chem. Soc., Faraday Trans., 1995, 91, 1813.

    20. [20]

      [20] R. B. Zhang, F. Y. Li, Q. J. Shi, L. T. Luo, Appl. Catal. A, 2001, 205, 279.

    21. [21]

      [21] B. R. Mitchell, Ind. Eng. Chem. Prod. Res. Dev., 1980, 19, 209.

    22. [22]

      [22] A. Khawam, D. R. Flanagan, J. Phys. Chem., 1980, 110, 17315.

    23. [23]

      [23] American Society for Testing Materials (ASTM-3906-03), Standard Test Method for Determination of Relative X-ray Diffraction Intensities of Faujasite-type Zeolite-containing materials, West Conshohocken, ASTM, 2003.

    24. [24]

      [24] L. E. Sandoval-Díaz, J. M. Martínez-Gil, C. A. Trujillo, J. Catal., 2012, 294, 89.

    25. [25]

      [25] C. A. Trujillo, U. N. Uribe, P. P. Knops-Gerrits, L. A. Oviedo, P. A. Jacobs, J. Catal., 1997, 168, 1.

    26. [26]

      [26] G. T. Kerr, J. Phys. Chem., 1968, 72, 2594.

    27. [27]

      [27] G. T. Kerr, J. Catal., 1969, 15, 200.

    28. [28]

      [28] J. G. Nery, Y. P. Mascarenhas, T. J. Bonagamba, N. C. Mello, E. F. Sousa-Aguiar, Zeolites, 1997, 18, 44.

    29. [29]

      [29] F. E. Trigueiro, D. F. J. Monteiro, F. M. Z. Zotin, E. F. Sousa-Aguiar, J. Alloy Compd., 2002, 344, 337.

    30. [30]

      [30] X. H. Du, X. G. Gao, H. G. Zhang, X. L. Li, P. S. Liu, Catal. Commun., 2013, 35, 17.

    31. [31]

      [31] H. W. Beck, C. F. Lochow, C. W. Nibert, US Patent 4 515 683, 1985.

    32. [32]

      [32] C. R. Moreira, M. Schmal, M. M. Pereira, Stud. Surf. Sci. Catal., 2002, 143, 915.

    33. [33]

      [33] C. R. Moreira, M. H. Herbst, P. R. de la Piscina, J. L. G. Fierro, N. Homs, M. M. Pereira, Microporous Mesoporous Mater., 2008, 115, 253.

    34. [34]

      [34] R. Pompe, S. Jara, N. G. Vannerberg, Appl. Catal., 1984, 13, 171.

    35. [35]

      [35] F. Mauge, J. C. Courcella, P. Engelhard, P. Gallezot, J. Grosmangin, Stud. Surf. Sci. Catal., 1986, 28, 803.

  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    17. [17]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

Metrics
  • PDF Downloads(1)
  • Abstract views(1279)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return