Citation:
Xiaohui Du, Xueli Li, Haitao Zhang, Xionghou Gao. Kinetics study and analysis of zeolite Y destruction[J]. Chinese Journal of Catalysis,
;2016, 37(2): 316-323.
doi:
10.1016/S1872-2067(15)60975-5
-
A series of zeolites, including USY zeolites without sodium, Na-USY at different Na contents, La-USY with different rare earth (RE) contents and La-Na-USY with RE and Na were prepared by an ion exchange method. They were investigated to understand the activation barriers for the destruction of Y zeolite structure under hydrothermal treatment and the effect of V using the solid-state kinetic model. The results showed that the pathways for Y zeolite destruction were dealumination, desiliconization and the disappearance of La-O bonds. Zeolites were destroyed by steam through acid hydrolysis, which was accelerated by V. In addition, Na and V exerted a synergistic effect on the framework destruction, and the formation of NaOH was the rate-determining step. The presence of RE elements decreased hydrolysis and stabilized the structure of the zeolites. The interaction between V and RE destroyed zeolite structure by eliminating the stabilizing La-O [RE-OH-RE]5+ bridges in the sodalite cages.
-
-
-
[1]
[1] G. H. Kühl, J. Phys. Chem. Solids, 1977, 38, 1259.
-
[2]
[2] Y. X. Zhao, B. W. Wojciechowski, J. Catal., 1996, 163, 365.
-
[3]
[3] L. A. Pine, J. Catal., 1990, 125, 514.
-
[4]
[4] R. F. Wormsbecher, A. W. Peters, J. M. Maselli, J. Catal., 1986, 100, 130.
-
[5]
[5] D. V. Cristiano-Torres, Y. Osorio-Pérez, L. A. Palomeque-Forero, L. E. Sandoval-Díaz, C. A. Trujillo, Appl. Catal. A, 2008, 346, 104.
-
[6]
[6] K. Hagiwara, T. Ebihara, N. Urasato, S.Ozawa, S. Nakata, Appl. Catal. A, 2003, 249, 213.
-
[7]
[7] A. S. Escobar, M. M. Pereira, R. D. M. Pimenta, L. Y. Lau, H. S. Cerqueira, Appl. Catal. A, 2005, 286, 196.
-
[8]
[8] M. L. Occelli, Catal. Rev. Sci. Eng., 1991, 33, 241.
-
[9]
[9] E. Wiberg, A. F. Holleman, Inorganic Chemistry. Academic Press, Berlin, 2001, 1349.
-
[10]
[10] J. Scherzer, Stud. Surf. Sci. Catal., 1993, 76, 145.
-
[11]
[11] L. E. Sandoval-Díaz, L. A. Palomeque-Forero, C. A. Trujillo, Appl. Catal. A, 2011, 393, 171.
-
[12]
[12] M. T. Xu, X. S. Liu, R. J. Madon, Prepr. Am. Chem. Soc., Div. Petro. Chem., 2000, 45, 307.
-
[13]
[13] M. T. Xu, X. S. Liu, R. J. Madon, J. Catal., 2002, 207, 237.
-
[14]
[14] X. H. Du, H. T. Zhang, X. L. Li, Z. G. Tan, H. H. Liu, X. H. Gao, Chin. J. Catal., 2013, 34, 1599.
-
[15]
[15] C. R. Moreira, M. M. Pereira, X. Alcobé, N. Homs, J. Llorca, J. L. G. Fierro, P. R. Piscina, Microporous Mesoporous Mater., 2007, 100, 276.
-
[16]
[16] C. R. Moreira, N. Homs, J. L. G. Fierro, M. M. Pereira, P. R. de la Piscina, Microporous Mesoporous Mater., 2010, 133, 75.
-
[17]
[17] J. A. Rabo, Zeolite Chemistry and Catalysis, Vol. 171. ACS Monograph, Washington, 1976, Chapter 3.
-
[18]
[18] J. G. Nery, M. V. Giotto, Y. P. Mascarenhas, D. Cardoso, F. M. Z. Zotin, E. F. Sousa-Aguiar, Microporous Mesoporous Mater., 2000, 41, 281.
-
[19]
[19] H. Klein, H. Fuess, M. Hunger, J. Chem. Soc., Faraday Trans., 1995, 91, 1813.
-
[20]
[20] R. B. Zhang, F. Y. Li, Q. J. Shi, L. T. Luo, Appl. Catal. A, 2001, 205, 279.
-
[21]
[21] B. R. Mitchell, Ind. Eng. Chem. Prod. Res. Dev., 1980, 19, 209.
-
[22]
[22] A. Khawam, D. R. Flanagan, J. Phys. Chem., 1980, 110, 17315.
-
[23]
[23] American Society for Testing Materials (ASTM-3906-03), Standard Test Method for Determination of Relative X-ray Diffraction Intensities of Faujasite-type Zeolite-containing materials, West Conshohocken, ASTM, 2003.
-
[24]
[24] L. E. Sandoval-Díaz, J. M. Martínez-Gil, C. A. Trujillo, J. Catal., 2012, 294, 89.
-
[25]
[25] C. A. Trujillo, U. N. Uribe, P. P. Knops-Gerrits, L. A. Oviedo, P. A. Jacobs, J. Catal., 1997, 168, 1.
-
[26]
[26] G. T. Kerr, J. Phys. Chem., 1968, 72, 2594.
-
[27]
[27] G. T. Kerr, J. Catal., 1969, 15, 200.
-
[28]
[28] J. G. Nery, Y. P. Mascarenhas, T. J. Bonagamba, N. C. Mello, E. F. Sousa-Aguiar, Zeolites, 1997, 18, 44.
-
[29]
[29] F. E. Trigueiro, D. F. J. Monteiro, F. M. Z. Zotin, E. F. Sousa-Aguiar, J. Alloy Compd., 2002, 344, 337.
-
[30]
[30] X. H. Du, X. G. Gao, H. G. Zhang, X. L. Li, P. S. Liu, Catal. Commun., 2013, 35, 17.
-
[31]
[31] H. W. Beck, C. F. Lochow, C. W. Nibert, US Patent 4 515 683, 1985.
-
[32]
[32] C. R. Moreira, M. Schmal, M. M. Pereira, Stud. Surf. Sci. Catal., 2002, 143, 915.
-
[33]
[33] C. R. Moreira, M. H. Herbst, P. R. de la Piscina, J. L. G. Fierro, N. Homs, M. M. Pereira, Microporous Mesoporous Mater., 2008, 115, 253.
-
[34]
[34] R. Pompe, S. Jara, N. G. Vannerberg, Appl. Catal., 1984, 13, 171.
-
[35]
[35] F. Mauge, J. C. Courcella, P. Engelhard, P. Gallezot, J. Grosmangin, Stud. Surf. Sci. Catal., 1986, 28, 803.
-
[1]
-
-
-
[1]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[2]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[3]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[4]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[5]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[6]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[7]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[8]
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
-
[9]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[10]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[11]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[12]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[13]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[14]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[15]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[16]
Renqing Lü , Shutao Wang , Fang Wang , Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119
-
[17]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[18]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[19]
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
-
[20]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(1279)
- HTML views(274)